-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathvoting_evaluate_partseg.py
136 lines (116 loc) · 5.33 KB
/
voting_evaluate_partseg.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import torch
import torch.optim as optim
import torch.optim.lr_scheduler as lr_sched
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
import os
from torchvision import transforms
from models import RSCNN_MSN_Seg as RSCNN_MSN
from data import ShapeNetPart
import utils.pytorch_utils as pt_utils
import data.data_utils as d_utils
import argparse
import random
import yaml
torch.backends.cudnn.enabled = True
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = True
seed = 123
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
parser = argparse.ArgumentParser(description='Relation-Shape CNN Shape Part Segmentation Voting Evaluate')
parser.add_argument('--config', default='cfgs/config_msn_partseg.yaml', type=str)
NUM_REPEAT = 300
NUM_VOTE = 10
def main():
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f)
for k, v in config['common'].items():
setattr(args, k, v)
test_transforms = transforms.Compose([
d_utils.PointcloudToTensor()
])
test_dataset = ShapeNetPart(root = args.data_root, num_points = args.num_points, split = 'test', normalize = True, transforms = test_transforms)
test_dataloader = DataLoader(
test_dataset,
batch_size=args.batch_size,
shuffle=False,
num_workers=int(args.workers),
pin_memory=True
)
model = RSCNN_MSN(num_classes = args.num_classes, input_channels = args.input_channels, relation_prior = args.relation_prior, use_xyz = True)
model.cuda()
if args.checkpoint is not '':
model.load_state_dict(torch.load(args.checkpoint))
print('Load model successfully: %s' % (args.checkpoint))
# evaluate
PointcloudScale = d_utils.PointcloudScale(scale_low=0.87, scale_high=1.15) # initialize random scaling
model.eval()
global_Class_mIoU, global_Inst_mIoU = 0, 0
seg_classes = test_dataset.seg_classes
seg_label_to_cat = {} # {0:Airplane, 1:Airplane, ...49:Table}
for cat in seg_classes.keys():
for label in seg_classes[cat]:
seg_label_to_cat[label] = cat
for i in range(NUM_REPEAT):
shape_ious = {cat:[] for cat in seg_classes.keys()}
for _, data in enumerate(test_dataloader, 0):
points, target, cls = data
points, target = Variable(points, volatile=True), Variable(target, volatile=True)
points, target = points.cuda(), target.cuda()
batch_one_hot_cls = np.zeros((len(cls), 16)) # 16 object classes
for b in range(len(cls)):
batch_one_hot_cls[b, int(cls[b])] = 1
batch_one_hot_cls = torch.from_numpy(batch_one_hot_cls)
batch_one_hot_cls = Variable(batch_one_hot_cls.float().cuda())
pred = 0
new_points = Variable(torch.zeros(points.size()[0], points.size()[1], points.size()[2]).cuda(), volatile=True)
for v in range(NUM_VOTE):
if v > 0:
new_points.data = PointcloudScale(points.data)
pred += F.softmax(model(new_points, batch_one_hot_cls), dim = 2)
pred /= NUM_VOTE
pred = pred.data.cpu()
target = target.data.cpu()
pred_val = torch.zeros(len(cls), args.num_points).type(torch.LongTensor)
# pred to the groundtruth classes (selected by seg_classes[cat])
for b in range(len(cls)):
cat = seg_label_to_cat[target[b, 0]]
logits = pred[b, :, :] # (num_points, num_classes)
pred_val[b, :] = logits[:, seg_classes[cat]].max(1)[1] + seg_classes[cat][0]
for b in range(len(cls)):
segp = pred_val[b, :]
segl = target[b, :]
cat = seg_label_to_cat[segl[0]]
part_ious = [0.0 for _ in range(len(seg_classes[cat]))]
for l in seg_classes[cat]:
if torch.sum((segl == l) | (segp == l)) == 0:
# part is not present in this shape
part_ious[l - seg_classes[cat][0]] = 1.0
else:
part_ious[l - seg_classes[cat][0]] = torch.sum((segl == l) & (segp == l)) / float(torch.sum((segl == l) | (segp == l)))
shape_ious[cat].append(np.mean(part_ious))
instance_ious = []
for cat in shape_ious.keys():
for iou in shape_ious[cat]:
instance_ious.append(iou)
shape_ious[cat] = np.mean(shape_ious[cat])
mean_class_ious = np.mean(list(shape_ious.values()))
print('\n------ Repeat %3d ------' % (i + 1))
for cat in sorted(shape_ious.keys()):
print('%s: %0.6f'%(cat, shape_ious[cat]))
print('Class_mIoU: %0.6f' % (mean_class_ious))
print('Instance_mIoU: %0.6f' % (np.mean(instance_ious)))
if mean_class_ious > global_Class_mIoU:
global_Class_mIoU = mean_class_ious
global_Inst_mIoU = np.mean(instance_ious)
print('\nBest voting Class_mIoU = %0.6f, Instance_mIoU = %0.6f' % (global_Class_mIoU, global_Inst_mIoU))
if __name__ == '__main__':
main()