forked from lh9171338/ULSD-ISPRS
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
126 lines (109 loc) · 4.51 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os
import numpy as np
import cv2
import matplotlib.pyplot as plt
import torch
from tqdm import tqdm
import time
import torch.utils.data as Data
from network.ulsd import ULSD
from network.dataset import Dataset
from config.cfg import parse
from metric.eval_mAPJ import eval_mAPJ
from metric.eval_sAP import eval_sAP
import util.bezier as bez
def save_lines(image, lines, filename, cfg, plot=False, fast=False):
width, height = image.shape[1], image.shape[0]
image_size = (width, height)
heatmap_size = cfg.heatmap_size
sx, sy = image_size[0] / heatmap_size[0], image_size[1] / heatmap_size[1]
lines[:, :, 0] *= sx
lines[:, :, 1] *= sy
if fast:
bez.insert_line(image, lines, color=[0, 255, 255], thickness=2)
bez.insert_point(image, lines[:, [0, -1]], color=[255, 255, 0], thickness=6)
cv2.imwrite(filename, image)
if plot:
cv2.namedWindow('image', 0)
cv2.imshow('image', image)
cv2.waitKey(1)
else:
fig = plt.figure()
fig.set_size_inches(width / height, 1, forward=False)
ax = plt.Axes(fig, [0.0, 0.0, 1.0, 1.0])
ax.set_axis_off()
fig.add_axes(ax)
plt.xlim([-0.5, width - 0.5])
plt.ylim([height - 0.5, -0.5])
plt.imshow(image[:, :, ::-1])
pts_list = bez.interp_line(lines)
for pts in pts_list:
pts = pts - 0.5
plt.plot(pts[:, 0], pts[:, 1], color="blue", linewidth=0.5)
plt.scatter(pts[[0, -1], 0], pts[[0, -1], 1], color="#FF0000", s=1.5, edgecolors="none", zorder=5)
plt.savefig(filename, dpi=height, bbox_inches=0)
if plot:
plt.show()
plt.close()
def test(model, loader, cfg, device):
# Test
model.eval()
index = 0
start = time.time()
for images in tqdm(loader, desc='test: '):
images = images.to(device)
jmaps, joffs, line_preds, line_scores = model(images)
jmaps = jmaps.detach().cpu()
joffs = joffs.detach().cpu()
line_preds = [line_pred.detach().cpu() for line_pred in line_preds]
line_scores = [line_score.detach().cpu() for line_score in line_scores]
for i in range(len(images)):
jmap = jmaps[i].numpy()
joff = joffs[i].numpy()
line_pred = line_preds[i].numpy()
line_score = line_scores[i].numpy()
src_filename = loader.dataset.file_list[index].split()[0]
filename = os.path.split(src_filename)[1]
image_filename = os.path.join(cfg.output_path, filename[:-4] + '.png')
npz_filename = os.path.join(cfg.output_path, filename[:-4] + '.pnz')
if cfg.evaluate:
np.savez(npz_filename, jmap=jmap, joff=joff,
line_pred=line_pred, line_score=line_score)
if cfg.save_image:
image = cv2.imread(src_filename)
line_pred = line_pred[line_score > cfg.score_thresh]
save_lines(image, line_pred, image_filename, cfg)
index += 1
end = time.time()
if cfg.evaluate:
fps = index / (end - start)
print(f'FPS: {fps:.1f}')
mAPJ, P, R = eval_mAPJ(cfg.groundtruth_path, cfg.output_path)
print(f'mAPJ: {mAPJ:.1f} | P: {P:.1f} | R: {R:.1f}')
msAP, P, R, sAP = eval_sAP(cfg.groundtruth_path, cfg.output_path)
print(
f'msAP: {msAP:.1f} | P: {P:.1f} | R: {R:.1f} | sAP5: {sAP[0]:.1f} | sAP10: {sAP[1]:.1f} | '
f'sAP15: {sAP[2]:.1f}')
if __name__ == '__main__':
# Parameter
cfg = parse()
os.makedirs(cfg.output_path, exist_ok=True)
# Use GPU or CPU
use_gpu = cfg.gpu >= 0 and torch.cuda.is_available()
device = torch.device(f'cuda:{cfg.gpu}' if use_gpu else 'cpu')
print('use_gpu: ', use_gpu)
# Load model
model = ULSD(cfg).to(device)
model_filename = os.path.join(cfg.model_path, cfg.model_name)
checkpoint = torch.load(model_filename, map_location=device)
if 'model' in checkpoint.keys():
state_dict = checkpoint['model']
else:
state_dict = checkpoint
model.load_state_dict(state_dict)
# Load dataset
dataset = Dataset(cfg.test_dataset_path, cfg, with_label=False)
loader = Data.DataLoader(dataset=dataset, batch_size=cfg.test_batch_size,
num_workers=cfg.num_workers, shuffle=False)
# Test network
test(model, loader, cfg, device)