forked from gfrd/egfrd
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDiskSurface.hpp
538 lines (475 loc) · 31.1 KB
/
DiskSurface.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
#ifndef DISK_SURFACE_HPP
#define DISK_SURFACE_HPP
#include <boost/bind.hpp>
#include "Surface.hpp"
#include "Disk.hpp"
#include "freeFunctions.hpp"
#include "StructureFunctions.hpp"
#include "geometry.hpp"
template <typename Tobj_, typename Tid_, typename Ttraits_>
class StructureContainer;
template<typename T_>
class CuboidalRegion;
template<typename T_>
class CylindricalSurface;
template<typename T_>
class SphericalSurface;
template<typename T_>
class DiskSurface;
template<typename T_>
class PlanarSurface;
template<typename Ttraits_>
class DiskSurface
: public BasicSurfaceImpl<Ttraits_, Disk<typename Ttraits_::length_type> >
{
// The DiskSurface is the implementation of a Basic surface parameterized with a Disk
public:
typedef BasicSurfaceImpl<Ttraits_, Disk<typename Ttraits_::length_type> > base_type;
typedef Ttraits_ traits_type;
typedef typename base_type::structure_name_type structure_name_type;
typedef typename base_type::structure_id_type structure_id_type;
typedef typename base_type::structure_type_id_type structure_type_id_type;
typedef typename base_type::shape_type shape_type;
typedef typename base_type::rng_type rng_type;
typedef typename base_type::position_type position_type;
typedef typename base_type::length_type length_type;
typedef typename base_type::side_enum_type side_enum_type;
typedef typename traits_type::species_type species_type;
typedef typename traits_type::structure_type structure_type;
typedef StructureContainer<Structure<traits_type>, structure_id_type, traits_type> structure_container_type;
typedef std::pair<position_type, position_type> position_pair_type;
typedef std::pair<position_type, structure_id_type> position_structid_pair_type;
typedef std::pair<position_structid_pair_type, position_structid_pair_type> position_structid_pair_pair_type;
// As a specialty, the DiskStructure has flags that can be set to specify its usage/behavior.
//
// If a DiskStructure is set to be a "barrier" ("cap") particles cannot pass by it, unless they
// first bind to it and then unbind. Usually this is used to "cap" a cylinder, i.e. to place a
// reactive disk at the end of a finite cylinder.
// If it is a "sink" it is inside the cylinder; in that case, particle can diffuse past it without reacting
// and the main loop will try to make a CylindricalSurfaceSinkInteraction domain, which also allows
// for diffusion of the particle past the sink. If the disk is a cap, particles cannot diffuse past it!
//
// In addition, the flag "RADIAL_DISSOCIATION" can be used to make the particle not move radially upon
// a dissociation event, but axially (i.e., in direction of the cylinder axis of the parent cylinder)
// This can be used for disks that are "sinks" (binding sites) on cylindrical structures
//
bool IS_BARRIER; // by default the disk is a cap/barrier to particles; automatically set by constructor below
bool RADIAL_DISSOCIATION; // accordingly, this is assumed to be true by default as well
// Setters for these flags
virtual void treat_as_sink()
{
this->IS_BARRIER = false;
}
virtual void treat_as_barrier()
{
this->IS_BARRIER = true;
}
virtual void forbid_radial_dissociation()
{
this->RADIAL_DISSOCIATION = false;
}
virtual void allow_radial_dissociation()
{
this->RADIAL_DISSOCIATION = true;
}
// Getters
virtual bool const& is_barrier() const
{
return this->IS_BARRIER;
}
virtual bool const& dissociates_radially() const
{
return this->RADIAL_DISSOCIATION;
}
/*** Info functions ***/
virtual position_type const& position() const
{
return base_type::shape().position();
}
/*** Simple structure-specific sampling functions ***/
// Produce a "random position" in the disk, which is always its center (the only legal pos.)
virtual position_type random_position(rng_type& rng) const
{
return ::random_position(base_type::shape(), boost::bind(&rng_type::uniform, rng, -1., 1.));
// return base_type::shape().position(); // TODO maybe this variant is better
}
// Procude a "random vector" on the disk; returns the same as random_position()
virtual position_type random_vector(length_type const& r, rng_type& rng) const
{
return base_type::shape().position();
}
// BD displacement = zero vector because there is only one legal position on the disk
virtual position_type bd_displacement(length_type const& mean, length_type const& r, rng_type& rng) const
{
return multiply(base_type::shape().unit_z(), 0.0); // TODO is there not cheaper way to pass a zero vector?
}
/*** New BD scheme functions ***/
// Rate for binding to particle on the structure
virtual Real get_1D_rate_geminate( Real const& k, length_type const& r01) const
{
// Same as for particle-particle reactions on the cylinder
return k;
}
// Rate for binding to the structure
virtual Real get_1D_rate_surface( Real const& k, length_type const& r0 ) const
{
return k;
}
// Reaction volume for binding to particle in the structure
virtual Real particle_reaction_volume( length_type const& r01, length_type const& rl ) const
{
// The disk can only hold 1 particle; this function therefore never should be called.
return rl;
// FIXME: This reaction volume is only correct for particles coming from a rod.
// If the interaction partner of the disk particle comes from a plane or from
// the bulk, a different volume factor shall be used. Then the return value of
// this function would depend on properties of the asker -> how to do???
}
// Reaction volume for binding to the structure
virtual Real surface_reaction_volume( length_type const& r0, length_type const& rl ) const
{
// The reaction volume for a particle on the rod interacting with a disk;
// should be the same as for two particles interacting with each other on the rod.
return rl;
}
// Vector of dissociation from the structure into the bulk
virtual position_type surface_dissociation_vector( rng_type& rng, length_type const& offset, length_type const& rl ) const
{
// This function produces a position for a particle unbinding from the disk.
// If it unbinds radially (standard case), it should lie within the reaction volume around the disk
// (Note that in that case this is the same code as for the CylindricalSurface!)
// If it unbinds axially (i.e., back to the cylinder), it does not change its position.
// We therefore initialize the new position with the Disk position by default,
// and only create a new vector if needed below.
position_type new_pos( base_type::shape().position() );
if( this->RADIAL_DISSOCIATION == true ){
Real X( rng.uniform(0.,1.) );
length_type const disk_radius = base_type::shape().radius();
position_type const unit_z = base_type::shape().unit_z();
// Calculate the length of the vector first
length_type const rrl( disk_radius + offset + rl );
length_type const rrl_sq( gsl_pow_2(rrl) );
length_type const rr_sq( gsl_pow_2(disk_radius + offset) );
// Create a random length between rr_sq and rrl_sq
length_type const diss_vec_length( sqrt( rr_sq + X * (rrl_sq - rr_sq) ) );
// Create a 3D vector with totally random orientation
position_type v(rng.uniform(0.,1.) - .5, rng.uniform(0.,1.) - .5, rng.uniform(0.,1.) - .5);
// Subtract the part parallel to the axis to get the orthogonal components and normalize
// This creates a normed random vector in the disk plane
v = normalize( subtract(v, multiply( unit_z, dot_product( unit_z, v ) ) ) );
new_pos = multiply( v, MINIMAL_SEPARATION_FACTOR * diss_vec_length);
// TODO define a global MINIMAL_SEPARATION_FACTOR also for BD mode
}
else
; // nothing changes, new_pos already correctly initialized above
return new_pos;
}
// Normed direction of dissociation from the structure to parent structure
virtual position_type surface_dissociation_unit_vector( rng_type& rng ) const
{
return base_type::shape().unit_z(); // FIXME
}
// Vector used to determine whether a particle has crossed the structure
// Here we return the zero-vector because there is no "sides" to cross
virtual position_type const side_comparison_vector() const
{
return create_vector<position_type>(0.0, 0.0, 0.0);
}
// Positions created at dissociation of one particle on the structure into two particles on the structure
virtual position_pair_type geminate_dissociation_positions( rng_type& rng, species_type const& s0, species_type const& s1, position_type const& op,
length_type const& rl ) const
{
// The positions of a particle dissociating into two new ones on the disk; should never happen,
// therefore this function just returns a dummy positions pair (2x the disk center)
return position_pair_type( base_type::shape().position(), base_type::shape().position() );
}
// Positions created at dissociation of one particle on the structure into two particles, one of which ends up in the bulk
virtual position_pair_type special_geminate_dissociation_positions( rng_type& rng, species_type const& s_disk, species_type const& s_diss,
position_type const& reactant_pos, length_type const& rl ) const
{
// This function produces two new positions for a dissociating particle in the case
// that one stays on the surface and the other one changes to the parent structure.
// TODO We have to distinguish between sink and cap here and between dissociation onto
// the rod and into the bulk/plane!
// Note: s_disk = disk-bound species, s_diss = dissociating species (may go to bulk or cylinder)
// Initialize the position_pair that will hold the new positions of the 2 particles
position_pair_type pp01;
// Particle 0 is the one that stays on the origin structure. It does not move.
pp01.first = reactant_pos;
// Particle 1 is the one that unbinds from the disk and is placed in the reaction volume
// around it (in case of radial unbinding) or next to/touching the first particle
// (taking into account the reaction vol.) on the cylinder (in case of axial unbinding)
if( this->RADIAL_DISSOCIATION == true )
{
length_type const disk_radius( base_type::shape().radius() );
length_type const r01( s_disk.radius() + s_diss.radius() );
// The following is the additional distance that we have to pass to surface_dissociation_vector() below
// to place the unbinding particle in contact with the disk particle or the disk, whatever has the larger radius.
// Later surface_dissociation_vector() will add this offset length to the disk_radius.
// If the disk-bound particle is larger than the disk, the final distance should be equal to r01,
// so we subtract disk_radius here (because it will be automatically added later); if in turn the
// disk is larger than the disk-bound particle, the offset is the radius of the dissoc. particle.
length_type offset( s_disk.radius() > disk_radius ? r01 - disk_radius : s_diss.radius());
pp01.second = add(reactant_pos, surface_dissociation_vector(rng, offset, rl));
}
else
{
// Generate a random distance within the reaction volume
Real X( rng.uniform(0.0, 1.0) );
length_type const r01( s_disk.radius() + s_diss.radius() + X * rl );
// Generate another random number to determine the direction of dissociaton
Real D( rng.uniform(0.0, 1.0) );
// Construct the dissociation vector in axial direction (given by unit_z of the disk)
position_type const disk_unit_z( base_type::shape().unit_z() );
position_type const axial_diss_vector( D>0.5? multiply(disk_unit_z, r01) : multiply(disk_unit_z, -r01) );
// Add to the original position of the reactant
pp01.second = add(reactant_pos, axial_diss_vector);
}
return pp01;
}
// Used by newBDPropagator
virtual length_type newBD_distance(position_type const& new_pos, length_type const& radius, position_type const& old_pos, length_type const& sigma) const
{
const length_type disk_radius (base_type::shape().radius());
const boost::array<length_type, 2> new_pos_rz(::to_internal(base_type::shape(), new_pos));
const boost::array<length_type, 2> old_pos_rz(::to_internal(base_type::shape(), old_pos));
if (new_pos_rz[1] * old_pos_rz[1] < 0 &&
( (new_pos_rz[0] < disk_radius ) || (old_pos_rz[0] < disk_radius) ) )
{
return -1.0 * base_type::distance(new_pos) + sigma;
}
else
{
return base_type::distance(new_pos) + sigma;
}
}
/*
virtual length_type minimal_distance(length_type const& radius) const
{
// TODO
length_type cylinder_radius = base_type::shape().radius();
// Return minimal distance *to* surface.
return (cylinder_radius + radius) * traits_type::MINIMAL_SEPARATION_FACTOR - cylinder_radius;
}
*/
/*** Boundary condition handling ***/
// FIXME This is a mess but it works. See ParticleContainerBase.hpp for explanation.
virtual position_structid_pair_type apply_boundary(position_structid_pair_type const& pos_struct_id,
structure_container_type const& structure_container) const
{
return pos_struct_id; // This seems a little strange, but we assume that particles are immobile on the disk
}
virtual position_structid_pair_type cyclic_transpose(position_structid_pair_type const& pos_struct_id,
structure_container_type const& structure_container) const
{
return pos_struct_id; // Disks can also not be connected, so no cyclic transpose.
}
// *** Dynamic dispatch for the structure functions *** //
// *** 1 *** - One new position
// This requires a double dynamic dispatch.
// First dispatch
virtual position_structid_pair_type get_pos_sid_pair(structure_type const& target_structure, position_type const& position,
length_type const& offset, length_type const& reaction_length, rng_type& rng) const
{
return target_structure.get_pos_sid_pair_helper(*this, position, offset, reaction_length, rng);
}
// Second dispatch
virtual position_structid_pair_type get_pos_sid_pair_helper(CuboidalRegion<traits_type> const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_helper_any<CuboidalRegion<traits_type> >(origin_structure, position, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_helper(SphericalSurface<traits_type> const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_helper_any<SphericalSurface<traits_type> >(origin_structure, position, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_helper(CylindricalSurface<traits_type> const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_helper_any<CylindricalSurface<traits_type> >(origin_structure, position, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_helper(DiskSurface<traits_type> const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_helper_any<DiskSurface<traits_type> >(origin_structure, position, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_helper(PlanarSurface<traits_type> const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_helper_any<PlanarSurface<traits_type> >(origin_structure, position, offset, rl, rng);
}
// The template function that defines the actual final dispatch procedure.
template<typename Tstruct_>
position_structid_pair_type get_pos_sid_pair_helper_any(Tstruct_ const& origin_structure, position_type const& position,
length_type const& offset, length_type const& rl, rng_type& rng) const
{
// redirect to structure function with well-defined typing
return ::get_pos_sid_pair<traits_type>(origin_structure, *this, position, offset, rl, rng);
};
// *** 2 *** - Two new positions
// Same principle as above, but different return type
// First dispatch
virtual position_structid_pair_pair_type get_pos_sid_pair_pair(structure_type const& target_structure, position_type const& position,
species_type const& s1, species_type const& s2, length_type const& reaction_length, rng_type& rng) const
{
return target_structure.get_pos_sid_pair_pair_helper(*this, position, s1, s2, reaction_length, rng);
}
// Second dispatch
virtual position_structid_pair_pair_type get_pos_sid_pair_pair_helper(CuboidalRegion<traits_type> const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_pair_helper_any<CuboidalRegion<traits_type> >(origin_structure, position, s_orig, s_targ, rl, rng);
}
virtual position_structid_pair_pair_type get_pos_sid_pair_pair_helper(SphericalSurface<traits_type> const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_pair_helper_any<SphericalSurface<traits_type> >(origin_structure, position, s_orig, s_targ, rl, rng);
}
virtual position_structid_pair_pair_type get_pos_sid_pair_pair_helper(CylindricalSurface<traits_type> const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_pair_helper_any<CylindricalSurface<traits_type> >(origin_structure, position, s_orig, s_targ, rl, rng);
}
virtual position_structid_pair_pair_type get_pos_sid_pair_pair_helper(DiskSurface<traits_type> const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_pair_helper_any<DiskSurface<traits_type> >(origin_structure, position, s_orig, s_targ, rl, rng);
}
virtual position_structid_pair_pair_type get_pos_sid_pair_pair_helper(PlanarSurface<traits_type> const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_pair_helper_any<PlanarSurface<traits_type> >(origin_structure, position, s_orig, s_targ, rl, rng);
}
// The template function that defines the actual final dispatch procedure.
template<typename Tstruct_>
position_structid_pair_pair_type get_pos_sid_pair_pair_helper_any(Tstruct_ const& origin_structure, position_type const& position,
species_type const& s_orig, species_type const& s_targ, length_type const& rl, rng_type& rng) const
{
// redirect to structure function with well-defined typing
return ::get_pos_sid_pair_pair<traits_type>(origin_structure, *this, position, s_orig, s_targ, rl, rng);
};
// *** 3 *** - Pair reactions => two origin structures
// First dispatch
// // Overloading get_pos_sid_pair with signature (origin_structure2, target_structure_type_id, ...)
// virtual position_structid_pair_type get_pos_sid_pair(structure_type const& origin_structure2, structure_type_id_type const& target_sid, position_type const& CoM,
// length_type const& offset, length_type const& reaction_length, rng_type& rng) const
// {
// // this just redirects
// return this->get_pos_sid_pair_2o(origin_structure2, target_sid, CoM, offset, reaction_length, rng);
// }
// // The actual implementation of the first dispatch
virtual position_structid_pair_type get_pos_sid_pair_2o(structure_type const& origin_structure2, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& reaction_length, rng_type& rng) const
{
return origin_structure2.get_pos_sid_pair_2o_helper(*this, target_sid, CoM, offset, reaction_length, rng);
}
// Second dispatch
virtual position_structid_pair_type get_pos_sid_pair_2o_helper(CuboidalRegion<traits_type> const& origin_structure1, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_2o_helper_any<CuboidalRegion<traits_type> >(origin_structure1, target_sid, CoM, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_2o_helper(SphericalSurface<traits_type> const& origin_structure1, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_2o_helper_any<SphericalSurface<traits_type> >(origin_structure1, target_sid, CoM, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_2o_helper(CylindricalSurface<traits_type> const& origin_structure1, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_2o_helper_any<CylindricalSurface<traits_type> >(origin_structure1, target_sid, CoM, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_2o_helper(DiskSurface<traits_type> const& origin_structure1, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_2o_helper_any<DiskSurface<traits_type> >(origin_structure1, target_sid, CoM, offset, rl, rng);
}
virtual position_structid_pair_type get_pos_sid_pair_2o_helper(PlanarSurface<traits_type> const& origin_structure1, structure_type_id_type const& target_sid,
position_type const& CoM, length_type const& offset, length_type const& rl, rng_type& rng) const
{
return this->get_pos_sid_pair_2o_helper_any<PlanarSurface<traits_type> >(origin_structure1, target_sid, CoM, offset, rl, rng);
}
// The template function that defines the actual final dispatch procedure.
template<typename Tstruct_>
position_structid_pair_type get_pos_sid_pair_2o_helper_any(Tstruct_ const& origin_structure1, structure_type_id_type const& target_sid, position_type const& CoM,
length_type const& offset, length_type const& reaction_length, rng_type& rng) const
{
// This method has to figure out where the product will be placed in case of a bimolecular reaction.
// As a default, we place particles on the substructure or the lower-dimensional structure. If the structures
// have the same structure type (=> same dimensionality) it does not matter on which structure we put the product,
// as long as it has the structure type id of the product species. This is handled in cases '1' below.
// 1 - Check whether one of the structures is the parent of the other. If yes, the daughter structure is the target.
if( this->is_parent_of_or_has_same_sid_as(origin_structure1) && origin_structure1.has_valid_target_sid(target_sid) )
// origin_structure1 is target
return ::get_pos_sid_pair<traits_type>(*this, origin_structure1, CoM, offset, reaction_length, rng);
else if( origin_structure1.is_parent_of_or_has_same_sid_as(*this) && this->has_valid_target_sid(target_sid) )
// this structure is target
return ::get_pos_sid_pair<traits_type>(origin_structure1, *this, CoM, offset, reaction_length, rng);
// 2 - Check which structures has the lower dimensionality / particle degrees of freedom, and put the product there.
else if( origin_structure1.shape().dof() < this->shape().dof() && origin_structure1.has_valid_target_sid(target_sid) )
// origin_structure1 is target
return ::get_pos_sid_pair<traits_type>(*this, origin_structure1, CoM, offset, reaction_length, rng);
else if( this->shape().dof() < origin_structure1.shape().dof() && this->has_valid_target_sid(target_sid) )
// this structure is target
return ::get_pos_sid_pair<traits_type>(origin_structure1, *this, CoM, offset, reaction_length, rng);
else throw propagation_error("Invalid target structure type: does not match product species structure type or has wrong hierarchy or dimensionality.");
}
// // *** 4 *** - Generalized functions for pair reactions with two origin structures and one target structure
// // NOTE: This is yet unused, but possibly useful in the future.
// // Overloading get_pos_sid_pair again with signature (origin_structure2, target_structure, ...) and introducing
// // a triple dynamic dispatch.
// virtual position_structid_pair_type get_pos_sid_pair(structure_type const& origin_structure2, structure_type const& target_structure, position_type const& position,
// length_type const& offset, length_type const& reaction_length, rng_type const& rng) const
// {
// return origin_structure2.get_pos_sid_pair_helper1(*this, target_structure, position, offset, reaction_length, rng);
// }
/*** Formerly used functions of the Morelli scheme ***/
// DEPRECATED
virtual length_type drawR_gbd(Real const& rnd, length_type const& r01, Real const& dt, Real const& D01, Real const& v) const
{
// TODO: This is part of the old BD scheme and should be removed at some point
return drawR_gbd_1D(rnd, r01, dt, D01, v);
}
// DEPRECATED
virtual Real p_acceptance(Real const& k_a, Real const& dt, length_type const& r01, position_type const& ipv,
Real const& D0, Real const& D1, Real const& v0, Real const& v1) const
{
// TODO: This is part of the old BD scheme and should be removed at some point
/*
The I_bd factors used for calculating the acceptance probability are dependent on the direction
of the overlap step (r = r_1 - r_0), compared to the direction of the drift.
The I_bd factors are defined for a particle creating an overlap comming from the right (r < 0).
Since the I_bd terms calulated here are for the backward move, we have to invert their drifts.
When the particle comes from the left (r > 0) we have to invert its drift again.
---Code below is used for drift dependent backstep.
Real numerator = g_bd_1D(ipv, r01, dt, D0, -v0);
Real denominator = g_bd_1D(ipv, r01, dt, D0, v0)*exp( ipv/abs_ipv*(abs_ipv - r01)*v/D01 );
Real correction = numerator/denominator;
if( ipv < 0 )
return correction*( k_a * dt / ( I_bd_1D(r01, dt, D0, -v0) + I_bd_1D(r01, dt, D1, v1) ) );
else
return correction*( k_a * dt / ( I_bd_1D(r01, dt, D0, v0) + I_bd_1D(r01, dt, D1, -v1) ) );
Also change v -> -v in drawR for the dissociation move.
*/
return 0.5*( k_a * dt / ( I_bd_1D(r01, dt, D0, v0) + I_bd_1D(r01, dt, D1, v1) ) );
}
// DEPRECATED
virtual position_type dissociation_vector( rng_type& rng, length_type const& r01, Real const& dt,
Real const& D01, Real const& v ) const
{
// TODO: This is part of the old BD scheme and should be removed at some point
return random_vector(drawR_gbd(rng.uniform(0., 1.), r01, dt, D01, v), rng);
}
virtual void accept(ImmutativeStructureVisitor<traits_type> const& visitor) const
{
visitor(*this);
}
virtual void accept(MutativeStructureVisitor<traits_type> const& visitor)
{
visitor(*this);
}
DiskSurface(structure_name_type const& name, structure_type_id_type const& sid, structure_id_type const& parent_struct_id, shape_type const& shape)
: base_type(name, sid, parent_struct_id, shape), IS_BARRIER(true), RADIAL_DISSOCIATION(true) {}
};
#endif /* DISK_SURFACE_HPP */