This repository has been archived by the owner on Jul 15, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathmerkle.go
160 lines (144 loc) · 4.07 KB
/
merkle.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
// Copyright 2015 The Dename Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
package coname
import (
"bytes"
"encoding/binary"
"fmt"
"golang.org/x/crypto/sha3"
)
const (
HashBytes = 32
IndexBytes = 32
IndexBits = IndexBytes * 8
)
type MerkleNode interface {
IsEmpty() bool
IsLeaf() bool
Depth() int
// For intermediate nodes
ChildHash(rightChild bool) []byte
Child(rightChild bool) (MerkleNode, error)
// For leaves
Index() []byte
Value() []byte
}
// TreeLookup looks up the entry at a particular index in the snapshot.
func TreeLookup(root MerkleNode, indexBytes []byte) (value []byte, err error) {
if len(indexBytes) != IndexBytes {
return nil, fmt.Errorf("Wrong index length")
}
if root.IsEmpty() {
// Special case: The tree is empty.
return nil, nil
}
n := root
indexBits := ToBits(IndexBits, indexBytes)
// Traverse down the tree, following either the left or right child depending on the next bit.
for !n.IsLeaf() {
descendingRight := indexBits[n.Depth()]
n, err = n.Child(descendingRight)
if err != nil {
return nil, err
}
if n.IsEmpty() {
// There's no leaf with this index.
return nil, nil
}
}
// Once a leaf node is reached, compare the entire index stored in the leaf node.
if bytes.Equal(indexBytes, n.Index()) {
// The leaf exists: we will simply return the value.
return n.Value(), nil
} else {
// There is no leaf with the requested index.
return nil, nil
}
}
const (
InternalNodeIdentifier = 'I'
LeafIdentifier = 'L'
EmptyBranchIdentifier = 'E'
)
// Differences from the CONIKS paper:
// * Add an identifier byte at the beginning to make it impossible for this to collide with leaves
// or empty branches.
// * Add the prefix of the index, to protect against limited hash collisions or bugs.
// This gives H(k_internal || h_child0 || h_child1 || prefix || depth)
func HashInternalNode(prefixBits []bool, childHashes *[2][HashBytes]byte) []byte {
h := sha3.NewShake256()
h.Write([]byte{InternalNodeIdentifier})
h.Write(childHashes[0][:])
h.Write(childHashes[1][:])
h.Write(ToBytes(prefixBits))
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, uint32(len(prefixBits)))
h.Write(buf)
var ret [HashBytes]byte
h.Read(ret[:])
return ret[:]
}
// This is the same as in the CONIKS paper.
// H(k_empty || nonce || prefix || depth)
func HashEmptyBranch(treeNonce []byte, prefixBits []bool) []byte {
h := sha3.NewShake256()
h.Write([]byte{EmptyBranchIdentifier})
h.Write(treeNonce)
h.Write(ToBytes(prefixBits))
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, uint32(len(prefixBits)))
h.Write(buf)
var ret [HashBytes]byte
h.Read(ret[:])
return ret[:]
}
// This is the same as in the CONIKS paper: H(k_leaf || nonce || index || depth || value)
func HashLeaf(treeNonce []byte, indexBytes []byte, depth int, value []byte) []byte {
h := sha3.NewShake256()
h.Write([]byte{LeafIdentifier})
h.Write(treeNonce)
h.Write(indexBytes)
buf := make([]byte, 4)
binary.LittleEndian.PutUint32(buf, uint32(depth))
h.Write(buf)
h.Write(value)
var ret [HashBytes]byte
h.Read(ret[:])
return ret[:]
}
func BitToIndex(b bool) int {
if b {
return 1
} else {
return 0
}
}
// In each byte, the bits are ordered MSB to LSB
func ToBits(num int, bs []byte) []bool {
bits := make([]bool, num)
for i := 0; i < len(bits); i++ {
bits[i] = (bs[i/8]<<uint(i%8))&(1<<7) > 0
}
return bits
}
// In each byte, the bits are ordered MSB to LSB
func ToBytes(bits []bool) []byte {
bs := make([]byte, (len(bits)+7)/8)
for i := 0; i < len(bits); i++ {
if bits[i] {
bs[i/8] |= (1 << 7) >> uint(i%8)
}
}
return bs
}