-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathutils.py
246 lines (205 loc) · 9.67 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
from collections import Counter
import pandas as pd
from sklearn.preprocessing import StandardScaler
from tqdm import tqdm
import csv
import re
import geopy.distance
import sklearn
import sklearn.model_selection
import joblib
import pickle
from math import pi
from sklearn.metrics import f1_score, roc_auc_score, accuracy_score
import random
import torch
import numpy as np
def lat_fix(val):
if val < -90:
val = -90
elif val > 90:
val = 90
return val
def get_dist(pred_lats, pred_lngs, true_lats, true_lngs, scaler):
pred_values = scaler.inverse_transform(np.stack([pred_lats, pred_lngs], axis=1))
true_values = scaler.inverse_transform(np.stack([true_lats, true_lngs], axis=1))
dist = [geopy.distance.great_circle((lat_fix(pred_values[i, 0]), pred_values[i, 1]),
(lat_fix(true_values[i, 0]), true_values[i, 1])).km for i in
list(range(len(pred_lats)))]
return dist
def get_evaluation(pred_lats, pred_lngs, true_lats, true_lngs, scaler):
# print(np.stack([pred_lats, pred_lngs], axis=1))
pred_values = scaler.inverse_transform(np.stack([pred_lats, pred_lngs], axis=1))
true_values = scaler.inverse_transform(np.stack([true_lats, true_lngs], axis=1))
dist = [geopy.distance.great_circle((lat_fix(pred_values[i, 0]), pred_values[i, 1]),
(lat_fix(true_values[i, 0]), true_values[i, 1])).km for i in
list(range(len(pred_lats)))]
dist100 = [1.0 if x < 100 else 0.0 for x in dist]
dist500 = [1.0 if x < 500 else 0.0 for x in dist]
dist1000 = [1.0 if x < 1000 else 0.0 for x in dist]
return {'MAE': sum(dist) / len(dist), 'Median error': pd.Series(dist).median(),
'ACC@100': pd.Series(dist100).mean(), 'ACC@500': pd.Series(dist500).mean(),
'ACC@1000': pd.Series(dist1000).mean()}
# return 0
def read_csv_data(filename, nrows=None, skiprows=None):
if '.parquet' in filename:
data = pd.read_parquet(filename, engine='pyarrow')
print('finish read parquet')
if nrows is not None:
data = data.sample(n=nrows)
else:
data = pd.read_csv(filename, encoding='utf-8', nrows=nrows, skiprows=skiprows, lineterminator='\n')
nna = data.isna().sum().sum()
if nna > 0:
print(f"Warning, dropping {nna} NaN rows")
data.dropna(inplace=True)
if not 'coordinates' in data.columns and not 'coords' in data.columns:
data['coordinates'] = data['lon'].astype(str) + "_" + data['lat'].astype(str)
else:
if 'coords' in data.columns:
data.rename(columns={'coords': 'coordinates'}, inplace=True)
if not 'lat' in data.columns:
data[['lon', 'lat']] = data['coordinates'].str.split('_', 1, expand=True)
data['lat'] = pd.to_numeric(data['lat'])
data['lng'] = pd.to_numeric(data['lon'])
else:
data['lng'] = data['lon']
if 'label\r' in data.columns:
data.rename(columns={'label\r': 'label'}, inplace=True)
if 'clean_text' in data.columns:
data.rename(columns={'clean_text': 'text'}, inplace=True)
return data
def read_train_test_data(filename, nrows=None):
data = read_csv_data(filename, nrows)
# data['text'] = data['tweet_text']
random.seed(1)
df_train, df_test = sklearn.model_selection.train_test_split(data, test_size=0.1)
return df_train, df_test
def read_scaler_and_vocab(load_dir="models"):
scaler_filename = load_dir + "/scaler.save"
scaler = joblib.load(scaler_filename)
with open(load_dir + '/vocabulary', 'rb') as fin:
vocabulary = pickle.load(fin)
vocabulary = list(vocabulary.keys())
return scaler, vocabulary
def lat_fix_tensor(val):
return torch.maximum(torch.minimum(val, torch.ones_like(val) * 90), torch.ones_like(val) * -90)
def distance(lat1, lon1, lat2, lon2, scaler, device):
transformed1 = torch.tensor(scaler.mean_).to(device) + torch.tensor(scaler.scale_).to(device) * torch.vstack(
[lat1, lon1]).transpose(0, 1).to(device)
lat1 = lat_fix_tensor(transformed1[:, 0])
lon1 = transformed1[:, 1]
transformed2 = torch.tensor(scaler.mean_).to(device) + torch.tensor(scaler.scale_).to(device) * torch.vstack(
[lat2, lon2]).transpose(0, 1).to(device)
lat2 = lat_fix_tensor(transformed2[:, 0])
lon2 = transformed2[:, 1]
p = pi / 180
t1 = (lat2 - lat1) * p
t2 = lat1 * p
t3 = lat2 * p
t4 = (lon2 - lon1) * p
t5 = torch.cos(t4)
t6 = torch.cos(t1)
t7 = torch.cos(t2)
t8 = torch.cos(t3)
a = 0.5 - t6 / 2 + t7 * t8 * (1 - t5) / 2
# a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return (12742 * torch.asin(torch.sqrt(a))).mean()
def distance_all(lat1, lon1, lat2, lon2):
transformed1 = torch.tensor(scaler.mean_).to(device) + torch.tensor(scaler.scale_).to(device) * torch.vstack(
[lat1, lon1]).transpose(0, 1).to(device)
lat1 = lat_fix_tensor(transformed1[:, 0])
lon1 = transformed1[:, 1]
transformed2 = torch.tensor(scaler.mean_).to(device) + torch.tensor(scaler.scale_).to(device) * torch.vstack(
[lat2, lon2]).transpose(0, 1).to(device)
lat2 = lat_fix_tensor(transformed2[:, 0])
lon2 = transformed2[:, 1]
p = pi / 180
t1 = (lat2 - lat1) * p
t2 = lat1 * p
t3 = lat2 * p
t4 = (lon2 - lon1) * p
t5 = torch.cos(t4)
t6 = torch.cos(t1)
t7 = torch.cos(t2)
t8 = torch.cos(t3)
a = 0.5 - t6 / 2 + t7 * t8 * (1 - t5) / 2
# a = 0.5 - cos((lat2-lat1)*p)/2 + cos(lat1*p) * cos(lat2*p) * (1-cos((lon2-lon1)*p))/2
return (12742 * torch.asin(torch.sqrt(a)))
def get_evaluation_error_predict(preds, trues, threshold=0.5):
preds_int = [1 if x >= threshold else 0 for x in preds]
return {'f1': f1_score(trues, preds_int), 'roc_auc': roc_auc_score(trues, preds),
'acc': accuracy_score(trues, preds_int), 'balance': (sum(trues) / len(trues)).clone().cpu().item()}
def add_cluster_id_column(dataset, cluster_merges, cluster_df):
dataset['label'] = [
cluster_df['coordinates'].index(cluster_merges[dataset.iloc[i]['coordinates']]) if dataset.iloc[i][
'coordinates'] in cluster_merges else -1
for i in tqdm(list(range(len(dataset))))]
def add_subcluster_id_column(dataset, subcluster_df):
subclusters = subcluster_df['coordinates'].values.tolist()
dataset['label'] = [
subclusters.index(dataset.iloc[i]['coordinates']) if dataset.iloc[i]['coordinates'] in subclusters else -1 for i
in tqdm(list(range(len(dataset))))]
def get_distances(n_clusters_, cluster_df):
distance_between_clusters = np.zeros((n_clusters_, n_clusters_))
for i in range(n_clusters_):
for j in range(n_clusters_):
distance_between_clusters[i][j] = geopy.distance.great_circle(
(cluster_df.iloc[i]['lat'], cluster_df.iloc[i]['lng']),
(cluster_df.iloc[j]['lat'], cluster_df.iloc[j]['lng'])).km
distance_between_clusters = torch.tensor(distance_between_clusters)
return distance_between_clusters
def train_scaler_and_vocab(df):
scaler = StandardScaler()
scaler.fit_transform(df[['lat', 'lng']].values)
joblib.dump(scaler, "models/scaler.save")
vocabulary = Counter()
for i, row in tqdm(df.iterrows()):
for c in row['text']:
vocabulary[c] += 1
with open('models/vocabulary', 'wb') as fout:
pickle.dump(vocabulary, fout)
return read_scaler_and_vocab()
def true_distance_from_pred_cluster(pred, lat_true, lng_true, cluster_df):
return geopy.distance.great_circle((cluster_df.iloc[pred]['lat'], cluster_df.iloc[pred]['lng']),
(lat_true, lng_true)).km
def dbscan_predict(model, X):
nr_samples = X.shape[0]
y_new = np.ones(shape=nr_samples, dtype=int) * -1
for i in range(nr_samples):
diff = model.components_ - X[i, :] # NumPy broadcasting
dist = np.linalg.norm(diff, axis=1) # Euclidean distance
shortest_dist_idx = np.argmin(dist)
# if dist[shortest_dist_idx] < model.eps:
y_new[i] = model.labels_[model.core_sample_indices_[shortest_dist_idx]]
return y_new
def distance_from_pred(cluster_pred_logits, cluster_true, distance_between_clusters):
pred = cluster_pred_logits.argmax(dim=1)
s = []
for i in range(len(cluster_pred_logits)):
s.append(distance_between_clusters[cluster_true[i], pred[i]])
return torch.tensor(s)
# distances = distance_between_clusters[cluster_true, :]
def true_distance_from_pred(cluster_pred_logits, lat_true, lng_true, cluster_df):
pred = cluster_pred_logits.argmax(dim=1)
s = []
for i in range(len(cluster_pred_logits)):
s.append(geopy.distance.great_circle(
(cluster_df.iloc[pred[i].item()]['lat'], cluster_df.iloc[pred[i].item()]['lng']),
(lat_true[i], lng_true[i])).km)
return torch.tensor(s)
def true_distance_from_coords(lat_pred, lng_pred, lat_true, lng_true):
s = []
for i in range(len(lat_true)):
s.append(geopy.distance.great_circle(
(lat_pred[i]*90, lng_pred[i]*180),
(lat_true[i], lng_true[i])).km)
return torch.tensor(s)
def prepare_subclusters(cluster_df, merges, cluster_id):
cluster_merges = merges[cluster_df.iloc[cluster_id]['coordinates']]
subcluster_df = pd.Series(cluster_merges).str.split('_', 1, expand=True)
subcluster_df.columns = ['lng', 'lat']
subcluster_df['lat'] = pd.to_numeric(subcluster_df['lat'])
subcluster_df['lng'] = pd.to_numeric(subcluster_df['lng'])
# distance_between_subclusters = get_distances(len(subcluster_df), subcluster_df)
return subcluster_df, len(subcluster_df)