-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathinference.py
40 lines (37 loc) · 1.47 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from transformers import AutoTokenizer
from model import ByT5_classifier
import torch
import pandas as pd
def byt5_preprocess(text):
return text.lower()
#return text
def byt5_predict(text):
text = byt5_preprocess(text)
te_feature = byt5_tokenizer([text], truncation=True, padding="max_length", max_length=140,
return_tensors='pt')['input_ids']
te_feature = te_feature.to(device).unsqueeze(0)
with torch.no_grad():
te_predictions = byt5_model(te_feature)
pred_cluster_proba = torch.nn.Softmax(dim=1)(torch.tensor(te_predictions.detach().cpu())).numpy()
return pred_cluster_proba
def geolocate_text_byt5(text, relevance_threshold=0.25):
ret = {}
relevance = 0
pred_clusters = byt5_predict(text)
if pred_clusters.max() >= relevance_threshold:
ret['lat'] = cluster_df.iloc[pred_clusters.argmax()]['lat']
ret['lon'] = cluster_df.iloc[pred_clusters.argmax()]['lng']
ret['from'] = 'byt5'
ret['relevance'] = pred_clusters.max()
return ret
else:
relevance = max(relevance, pred_clusters.max())
ret['relevance'] = relevance
ret['from'] = 'none'
return ret
device = 'cpu'
byt5_model = ByT5_classifier(n_clusters=3000, model_name='google/byt5-small')
byt5_model.load_state_dict(torch.load('pretrained.pt'))
byt5_tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')
cluster_df = pd.read_csv('cluster_df.csv')
print(geolocate_text_byt5("im at moscow"))