-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdcis.py
292 lines (254 loc) · 11.7 KB
/
dcis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
import argparse
import copy
import json
import sys
import warnings
import datasets
import torch
import math
from transformers import AutoTokenizer, AutoConfig, AutoModelForCausalLM
from eval.perplexity import compute_perplexity
def _yarn_find_correction_dim(num_rotations, dim, base=10000, max_position_embeddings=2048):
return (dim * math.log(max_position_embeddings/(num_rotations * 2 * math.pi)))/(2 * math.log(base))
def _yarn_find_correction_range(low_rot, high_rot, dim, base=10000, max_position_embeddings=2048):
low = math.floor(_yarn_find_correction_dim(
low_rot, dim, base, max_position_embeddings))
high = math.ceil(_yarn_find_correction_dim(
high_rot, dim, base, max_position_embeddings))
return max(low, 0), min(high, dim-1)
def _yarn_linear_ramp_mask(min, max, dim):
if min == max:
max += 0.001
linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
ramp_func = torch.clamp(linear_func, 0, 1)
return ramp_func
def yarn_factors(s, head_dim, base, original_max_position_embeddings, beta_fast, beta_slow):
inv_freq_extrapolation = torch.ones(head_dim // 2)
inv_freq_interpolation = inv_freq_extrapolation * s
low, high = _yarn_find_correction_range(beta_fast, beta_slow, head_dim, base, original_max_position_embeddings)
inv_freq_mask = (1 - _yarn_linear_ramp_mask(low, high, head_dim // 2).float())
inv_freq = s / (inv_freq_extrapolation * (1 - inv_freq_mask) + inv_freq_interpolation * inv_freq_mask)
return inv_freq
def init_factors(scaling_factor, init_type, dim, base, original_max_position_embeddings, beta_fast, beta_slow):
factors = None
if init_type == 'ones':
factors = torch.ones(dim // 2)
elif init_type == 'yarn':
factors = yarn_factors(scaling_factor, dim, base, original_max_position_embeddings, beta_fast, beta_slow)
elif init_type == 'ntk':
factors = (scaling_factor ** (torch.arange(0, dim, 2, dtype=torch.float32) / (dim - 2)))
elif init_factors == 'pi':
factors = torch.full([1, dim//2], scaling_factor)
else:
raise RuntimeError("init_type must be one of [ones, yarn, ntk, pi]")
return factors
def load_model(args, path):
if args.model_name == "llama":
from modeling_source.modeling_llama import LlamaForCausalLM
from modeling_source.configuration_llama import LlamaConfig
config_cls = LlamaConfig
model_cls = LlamaForCausalLM
elif args.model_name == "mistral":
from modeling_source.modeling_mistral import MistralForCausalLM
from modeling_source.configuration_mistral import MistralConfig
config_cls = MistralConfig
model_cls = MistralForCausalLM
else:
config = AutoConfig.from_pretrained(path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
path,
torch_dtype=torch.bfloat16,
trust_remote_code=True,
device_map="auto",
config=config,
use_flash_attention_2=True,
)
return model
config = config_cls.from_pretrained(args.model)
if args.sliding_window_attention:
config.sliding_window = args.sliding_window_attention
model = model_cls.from_pretrained(
path,
torch_dtype=torch.bfloat16,
device_map="auto",
config=config,
use_flash_attention_2=True,
)
return model
def load_data(args, tokenizer):
if args.tokenized:
try:
input_texts = datasets.load_from_disk(args.tokenized)
except:
input_texts = datasets.load_dataset(
args.tokenized, name=args.subset, split=args.split)
else:
input_texts = datasets.load_dataset(
args.dataset, name=args.subset, split=args.split)
def tokenize(example):
tokenized = tokenizer(
example[args.feature],
add_special_tokens=False,
padding=True,
truncation=False,
max_length=sys.maxsize,
return_attention_mask=True,
)
example["input_ids"] = tokenized["input_ids"]
example["attention_mask"] = tokenized["attention_mask"]
example["tokenized_len"] = len(tokenized["input_ids"])
return example
input_texts = input_texts.map(tokenize)
if args.save_tokenized:
input_texts.save_to_disk(args.save_tokenized)
print(f"Saved tokenized dataset to {args.save_tokenized}")
return
if args.dataset_min_tokens:
input_texts = input_texts.filter(
lambda x: x["tokenized_len"] >= args.dataset_min_tokens)
if args.samples:
input_texts = input_texts[:args.samples]
return input_texts
def output_cur_factors(factors, init_type, scaling_factor, num, model_name, cur_range):
output_path = f'./factors/{model_name}/{scaling_factor}_{init_type}_{num}.pt'
torch.save(factors.clone(), output_path)
save_range = {"cur_range": cur_range, "num": num}
output_path = f'./factors/{model_name}/{scaling_factor}_{init_type}_{num}.json'
with open(output_path, 'w') as f:
json.dump(save_range, f)
def modify_factors(model, model_name, scaling_factor, factors):
if model_name == "llama":
from modeling_source.modeling_llama import LlamaDCISScalingRotaryEmbedding
for each in model.model.layers:
each.self_attn.rotary_emb = LlamaDCISScalingRotaryEmbedding(
each.self_attn.head_dim,
max_position_embeddings=each.self_attn.max_position_embeddings,
scaling_factor=scaling_factor,
each_dim_factors=copy.deepcopy(factors),
base=each.self_attn.rope_theta,
)
elif model_name == "mistral":
from modeling_source.modeling_mistral import MistralDCISScalingRotaryEmbedding
for each in model.model.layers:
each.self_attn.rotary_emb = MistralDCISScalingRotaryEmbedding(
each.self_attn.head_dim,
max_position_embeddings=each.self_attn.max_position_embeddings,
scaling_factor=scaling_factor,
each_dim_factors=copy.deepcopy(factors),
base=each.self_attn.rope_theta,
)
else:
from modeling_source.patch import LlamaDCISScalingRotaryEmbedding
for each in model.model.layers:
each.self_attn.rotary_emb = LlamaDCISScalingRotaryEmbedding(
each.self_attn.head_dim,
max_position_embeddings=each.self_attn.max_position_embeddings,
scaling_factor=scaling_factor,
each_dim_factors=copy.deepcopy(factors),
base=each.self_attn.rope_theta,
)
return model
def dcis(model, data, tokenizer, cur_factors, cur_range, mnum, num, itercnt, max_length, scaling_factor, model_name):
new_factors = copy.deepcopy(cur_factors)
new_range = []
jj = range(0, mnum, num)
for j in reversed(jj):
ppl = []
step = (cur_range[j//num][1] - cur_range[j//num][0]) / (itercnt - 1)
kk = [cur_range[j//num][0] + step * i for i in range(itercnt)]
for k in kk:
print('k=', k)
tmp_factors = copy.deepcopy(new_factors)
tmp_factors[j:j+num] += k
tmp_factors = torch.clamp(tmp_factors, min=0.0001)
model = modify_factors(model, model_name, scaling_factor, tmp_factors)
tmp_ppl = compute_perplexity(
model=model, encodings=data, tokenizer=tokenizer,
add_start_token=tokenizer.bos_token is not None, max_length=max_length,
)['mean_perplexity']
print("ppl:", tmp_ppl)
if tmp_ppl < 100:
ppl.append([tmp_ppl, k])
if len(ppl) == 0:
new_range.insert(0, [cur_range[j//num][0], cur_range[j//num][1]])
new_range.insert(0, [cur_range[j//num][0], cur_range[j//num][1]])
continue
ppl.sort(key=lambda x: x[0])
print('d:', j, '~', j+num)
print('ppl:', ppl)
new_factors[j:j+num] += ppl[0][1]
low = high = ppl[0][1]
for k in range(min(3, len(ppl))):
low = min(low, ppl[k][1])
high = max(high, ppl[k][1])
low -= step
high += step
new_range.insert(0, [low-ppl[0][1], high-ppl[0][1]])
new_range.insert(0, [low-ppl[0][1], high-ppl[0][1]])
return new_factors, new_range
def main(args):
model_path = args.model
model = load_model(args, model_path)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
model_path, model_max_length=sys.maxsize, trust_remote_code=True)
tokenizer.pad_token = tokenizer.eos_token
data = load_data(args,tokenizer)
scaling_factor = args.factor
init_type = args.init_type
model_name = args.model_name
head_dim = model.model.layers[0].self_attn.head_dim
base = model.model.layers[0].self_attn.rope_theta
max_length = args.original_max_position_embeddings * int(scaling_factor)
mnum = head_dim // 2
num = mnum // 2
itercnt = args.itercnt
cur_factors = init_factors(scaling_factor, init_type , head_dim, base,
args.original_max_position_embeddings,
args.beta_fast, args.beta_slow)
cur_range = [[-4*1.25, 4*1.25], [-4*1.25, 4*1.25]]
if args.longrope:
from longrope import search_lambda_factors
search_lambda_factors(model=model, data=data, tokenizer=tokenizer,
extension_ratio=scaling_factor, max_length=max_length,
model_name=model_name, head_dim=head_dim, base=base,
original_max_position_embeddings=args.original_max_position_embeddings,
beta_fast=args.beta_fast, beta_slow=args.beta_slow)
return
while num >= 1:
output_cur_factors(cur_factors, init_type, scaling_factor, num, model_name, cur_range)
print('num:', num)
print('cur_factors:', cur_factors)
print('cur_range:', cur_range)
cur_factors, cur_range = dcis(model=model, data=data, tokenizer=tokenizer,
cur_factors=cur_factors, cur_range=cur_range, mnum=mnum,
num=num, itercnt=itercnt, max_length=max_length,
scaling_factor=scaling_factor, model_name=model_name)
num //= 2
output_cur_factors(cur_factors, init_type, scaling_factor, num, model_name, cur_range)
print('num:', num)
print('cur_factors:', cur_factors)
print('cur_range:', cur_range)
if __name__ == "__main__":
warnings.simplefilter("ignore")
args = argparse.ArgumentParser()
args.add_argument("--model", type=str)
args.add_argument("--dataset", type=str)
args.add_argument("--samples", type=int, default=5)
args.add_argument("--factor", type=float, default=1)
args.add_argument("--model-name", type=str, default="llama")
args.add_argument("--init-type", type=str, default="yarn")
args.add_argument("--original-max-position-embeddings", type=int, default=4096)
args.add_argument("--itercnt", type=int, default=10)
args.add_argument("--tokenized", type=str)
args.add_argument("--split", type=str, default="validation")
args.add_argument("--subset", type=str)
args.add_argument("--feature", type=str, default="text")
args.add_argument("--save-tokenized", type=str)
args.add_argument("--dataset-min-tokens", type=int)
args.add_argument("--paraquet", type=str)
args.add_argument("--longrope", action="store_true")
args.add_argument("--beta-fast", type=float, default=32)
args.add_argument("--beta-slow", type=float, default=1)
args.add_argument("--sliding-window-attention", type=int)
main(args.parse_args())