-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcontrast_train.py
106 lines (80 loc) · 3.32 KB
/
contrast_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
import os
import torch
import argparse
from torch.backends import cudnn
from util import pyutils
from module.dataloader import get_dataloader
from module.model import get_model
from module.optimizer import get_optimizer
from module.train import train_cls, train_eps, train_contrast
from module.validate import validate
cudnn.enabled = True
torch.backends.cudnn.benchmark = False
def get_arguments():
parser = argparse.ArgumentParser()
# session
parser.add_argument("--session", default="eps", type=str)
# data
parser.add_argument("--data_root", required=True, type=str)
parser.add_argument("--saliency_root", type=str)
parser.add_argument("--train_list", default="data/voc12/train_aug_id.txt", type=str)
parser.add_argument("--val_list", default="data/voc12/val_id.txt", type=str)
parser.add_argument("--batch_size", default=8, type=int)
parser.add_argument("--iter_size", default=2, type=int)
parser.add_argument("--crop_size", default=448, type=int)
parser.add_argument("--resize_size", default=(448, 768))
# network
parser.add_argument("--network", default="network.resnet38_contrast", type=str)
parser.add_argument("--weights", type=str, default='./ilsvrc-cls_rna-a1_cls1000_ep-0001.params')
# optimizer
parser.add_argument("--max_epoches", default=15, type=int)
parser.add_argument("--lr", default=0.01, type=float)
parser.add_argument("--num_workers", default=8, type=int)
parser.add_argument("--wt_dec", default=5e-4, type=float)
parser.add_argument("--loss_type", default='mse', type=str)
parser.add_argument("--eval", type=bool)
parser.add_argument("--num_sample", default=21, type=int)
parser.add_argument("--max_iters", default=10000, type=int)
# hyper-parameters for EPS
parser.add_argument("--tau", default=0.5, type=float)
parser.add_argument("--alpha", default=0.5, type=float)
args = parser.parse_args()
if 'cls' in args.network:
args.network_type = 'cls'
elif 'eps' in args.network:
args.network_type = 'eps'
elif 'contrast' in args.network:
args.network_type = 'contrast'
else:
raise Exception('No appropriate model type')
return args
if __name__ == '__main__':
# get arguments
args = get_arguments()
# set log
args.log_folder = os.path.join('train_log', args.session)
os.makedirs(args.log_folder, exist_ok=True)
pyutils.Logger(os.path.join(args.log_folder, 'log_cls.log'))
print(vars(args))
# load dataset
train_loader, val_loader = get_dataloader(args)
max_step = (len(open(args.train_list).read().splitlines()) // args.batch_size) * args.max_epoches
# load network and its pre-trained model
model = get_model(args)
# set optimizer
optimizer = get_optimizer(args, model, max_step)
# evaluate
if args.eval:
validate(model, val_loader, 0, args)
exit()
# train
model = torch.nn.DataParallel(model).cuda()
model.train()
if args.network_type == 'cls':
train_cls(train_loader, model, optimizer, max_step, args)
elif args.network_type == 'eps':
train_eps(train_loader, model, optimizer, max_step, args)
elif args.network_type == 'contrast':
train_contrast(train_loader, model, optimizer, max_step, args)
else:
raise Exception('No appropriate model type')