-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathH_SEPSO.py
148 lines (116 loc) · 7.36 KB
/
H_SEPSO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
from torch.utils.tensorboard import SummaryWriter
from L_SEPSO import SEPSO_Down
from datetime import datetime
import os,shutil
import torch
import time
class SEPSO_UP():
def __init__(self, opt):
'''Use Hierarchical Self-Evolving Framework (HSEF) to tune the hyperparameters of OkayPlan autonomously'''
self.T = opt.T
self.dvc = torch.device(opt.dvc)
self.G, self.N, self.D = 8, opt.N, 55 # number of Groups, particles in goups, and particle dimension
self.arange_idx = torch.arange(self.G, device=self.dvc) # 索引常量
self.fitness = torch.ones((self.G, self.N), device=self.dvc) * torch.inf
# 代表SEPSO_DOWN的w_init, w_end_rate(w_end = w_init*w_end_rate), v_limit_ratio, C1, C2, C3
Hyper_Max_range = torch.tensor([0.9, 0.9, 0.8, 2.0, 2.0, 2.0]).unsqueeze(-1).repeat(1,self.G).view(-1) #(48,)
Hyper_Min_range = torch.tensor([0.2, 0.1, 0.1, 1.0, 1.0, 1.0]).unsqueeze(-1).repeat(1,self.G).view(-1) #(48,)
self.Max_range = torch.concat((Hyper_Max_range, torch.tensor([4, 6, 4, 6, 0.5, 40, 20]))).to(self.dvc) #48~54
self.Min_range = torch.concat((Hyper_Min_range, torch.tensor([0.1, 1, 0.1, 1, 0.0, 1, 5]))).to(self.dvc) #48~54
# R Matrix, (4,G,N,1)
self.Random = torch.ones((4,self.G,self.N,1), device=self.dvc) #更新速度时在装载随机数
# 生成本次实验名字
timenow = str(datetime.now())[0:-10]
timenow = ' ' + timenow[0:13] + '_' + timenow[-2::]
self.Exp_Name = f'Relax{opt.relax}_S{opt.seed}_' + timenow
self.save = opt.save
if opt.save:
try: os.mkdir(f'Tbests_{self.T}_{self.D}')
except: pass
self.Tbest_all = torch.zeros((self.T, self.D))
self.write = opt.write
if opt.write:
writepath = 'runs/'+self.Exp_Name
if os.path.exists(writepath): shutil.rmtree(writepath)
self.writer = SummaryWriter(log_dir=writepath)
self.relax = opt.relax # relax = 1.0 means that relaxation strategy is not used.
assert 0<self.relax and self.relax<=1.0
def _uniform_random(self, low, high, shape):
'''Generate uniformly random number in [low, high) in 'shape' on self.dvc'''
return (high - low)*torch.rand(shape, device=self.dvc) + low
def reset(self, params):
'''Reset the parameters and the particles of the DTPSO'''
# Inertia Initialization for 8 Groups
self.w_init = params[0:self.G].unsqueeze(-1).unsqueeze(-1)
self.w_end = (params[0:self.G]*params[self.G:(2*self.G)]).unsqueeze(-1).unsqueeze(-1) # 0.2, 0.4, 0.1, 0.6, 0.1, 0.5, 0.1, 0.3
self.w_delta = (self.w_init - self.w_end)/self.T # (G,1,1)
# Velocity Constraint Initialization for 8 Groups
v_limit_ratio = params[(2*self.G):(3*self.G)] #(G,)
Haf_range = ((self.Max_range - self.Min_range)/2).expand((self.G, 1, self.D)) # (G,1,D), 搜索区间长度的一半,相当于DTPSO的Search_range[1]
self.v_max = v_limit_ratio[:, None, None] * Haf_range #(G,1,D) + (G,1,1)*(G,1,D) = (G,1,D)
self.v_min = -self.v_max #(G,1,D)
# H Matrix, (4,G=8,1,1)
self.Hyper = torch.ones((4,self.G), device=self.dvc)
self.Hyper[1] = params[(3*self.G):(4*self.G)]
self.Hyper[2] = params[(4*self.G):(5*self.G)]
self.Hyper[3] = params[(5*self.G):(6*self.G)]
self.Hyper.unsqueeze_(-1).unsqueeze_(-1)
# L Matrix, (4,G,N,D)
self.Locate = torch.zeros((4,self.G,self.N,self.D), device=self.dvc)
self.Locate[1:4] = self._uniform_random(low=self.Min_range, high=self.Max_range, shape=(self.G,self.N,self.D)) #[0,X,X,X]
# K Matrix, (4,G,N,D)
self.Kinmtc = torch.zeros((4,self.G,self.N,self.D), device=self.dvc) #[V,Pbest,Gbest,Tbest]
self.Kinmtc[0] = self._uniform_random(low=-self.Max_range, high=self.Max_range, shape=(self.G,self.N,self.D))
self.Kinmtc[0].clip_(self.v_min, self.v_max) # 限制速度范围
# Best Value initialization
self.Pbest_value = torch.ones((self.G,self.N), device=self.dvc) * torch.inf
self.Gbest_value = torch.ones(self.G, device=self.dvc) * torch.inf
self.Tbest_value = torch.inf
def iterate(self):
sepso_down = SEPSO_Down(self.dvc, Random_Obs = True, DPI=True, Kinematics_Penalty=True)
'''双for循环遍历计算SEPSO_UP所有粒子的Fitness'''
for i in range(self.T):
t0 = time.time()
for Gid in range(self.G):
for Nid in range(self.N):
fitness = sepso_down.evaluate_params(self.Locate[1,Gid,Nid].clone())
self.fitness[Gid, Nid] = fitness
print(f'Evolved counter:{i}, G:{Gid}, N:{Nid}')
''' Step 2: 更新Pbest, Gbest, Tbest 的 value 和 particle '''
# Pbest
P_replace = (self.fitness < self.Pbest_value) # (G,N)
Relaxec_P_replace = (self.fitness < (self.Pbest_value*self._uniform_random(self.relax, 1.0, (self.G,self.N)))) # (G,N)
self.Kinmtc[1, Relaxec_P_replace] = self.Locate[1, Relaxec_P_replace] # 更新Pbest_particles
self.Pbest_value[P_replace] = self.fitness[P_replace] # 更新Pbest_value
# Gbest
values, indices = self.fitness.min(dim=-1)
G_replace = (values < self.Gbest_value) # (G,)
Relaxed_G_replace = (values < (self.Gbest_value * self._uniform_random(self.relax, 1.0, (self.G,)))) # (G,)
self.Kinmtc[2, Relaxed_G_replace] = (self.Locate[2, self.arange_idx, indices][Relaxed_G_replace].unsqueeze(1)) # 更新Gbest_particles
self.Gbest_value[G_replace] = values[G_replace] # 更新Gbest_value
# Tbest
min_fitness = self.fitness.min()
if min_fitness < self.Tbest_value * self._uniform_random(self.relax, 1.0, (1,)): # 更新Tbest_particles
flat_idx = self.fitness.argmin()
self.Kinmtc[3] = (self.Locate[3, flat_idx//self.N, flat_idx % self.N]).clone() #这里必须clone, 否则数据联动
if min_fitness < self.Tbest_value:
self.Tbest_value = min_fitness # 更新Tbest_value
''' Step 3: 更新速度 '''
self.Hyper[0] = self.w_init - self.w_delta*i # 惯性因子衰减
self.Random[1:4] = torch.rand((3,self.G,self.N,1), device=self.dvc) #装载随机数
self.Kinmtc[0] = (self.Hyper * self.Random * (self.Kinmtc - self.Locate)).sum(dim=0) #(G,N,D)
self.Kinmtc[0].clip_(self.v_min, self.v_max) # 限制速度范围
''' Step 4: 更新位置 '''
self.Locate[1:4] += self.Kinmtc[0] # (3,G,N,D) + (G,N,D) = (3,G,N,D)
self.Locate[1:4].clip_(self.Min_range, self.Max_range) # 限制位置范围
'''Print, Write, and Save'''
MeanFit = self.fitness.mean()
time_per_iteration = round(time.time()-t0,1)
print(f'IterationTime:{time_per_iteration}s, RemainTime:{round((self.T-i)*time_per_iteration/3600,1)}h, MeanFit:{MeanFit}')
if self.write:
self.writer.add_scalar('MeanFit', MeanFit, global_step=i)
if self.save:
self.Tbest_all[i] = self.Kinmtc[3,0,0].clone()
if (i+1) % 10 == 0:
Saved_name = f'Tbests_{self.T}_{self.D}' + self.Exp_Name + '.pt'
torch.save(self.Tbest_all[0:i], Saved_name)