-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtrain_MSRResNet_x4.yml
126 lines (109 loc) · 2.71 KB
/
train_MSRResNet_x4.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
# Modified SRResNet w/o BN from:
# Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network
# ----------- Commands for running
# ----------- Single GPU with auto_resume
# PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/train.py -opt options/train/SRResNet_SRGAN/train_MSRResNet_x4.yml --auto_resume
# general settings
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
# dataset and data loader settings
datasets:
train:
name: DIV2K
type: PairedImageDataset
dataroot_gt: datasets/DF2K/DIV2K_train_HR_sub
dataroot_lq: datasets/DF2K/DIV2K_train_LR_bicubic_X4_sub
meta_info_file: basicsr/data/meta_info/meta_info_DIV2K800sub_GT.txt
# (for lmdb)
# dataroot_gt: datasets/DIV2K/DIV2K_train_HR_sub.lmdb
# dataroot_lq: datasets/DIV2K/DIV2K_train_LR_bicubic_X4_sub.lmdb
filename_tmpl: '{}'
io_backend:
type: disk
# (for lmdb)
# type: lmdb
gt_size: 128
use_hflip: true
use_rot: true
# data loader
num_worker_per_gpu: 6
batch_size_per_gpu: 16
dataset_enlarge_ratio: 100
prefetch_mode: ~
val:
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
val_2:
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: ~
param_key_g: params
strict_load_g: true
resume_state: ~
# training settings
train:
ema_decay: 0.999
optim_g:
type: Adam
lr: !!float 2e-4
weight_decay: 0
betas: [0.9, 0.99]
scheduler:
type: CosineAnnealingRestartLR
periods: [250000, 250000, 250000, 250000]
restart_weights: [1, 1, 1, 1]
eta_min: !!float 1e-7
total_iter: 1000000
warmup_iter: -1 # no warm up
# losses
pixel_opt:
type: L1Loss
loss_weight: 1.0
reduction: mean
# validation settings
val:
val_freq: !!float 5e3
save_img: false
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
better: higher # the higher, the better. Default: higher
niqe:
type: calculate_niqe
crop_border: 4
better: lower # the lower, the better
# logging settings
logger:
print_freq: 100
save_checkpoint_freq: !!float 5e3
use_tb_logger: true
wandb:
project: ~
resume_id: ~
# dist training settings
dist_params:
backend: nccl
port: 29500