-
Notifications
You must be signed in to change notification settings - Fork 1.2k
/
Copy pathtest_MSRResNet_x4.yml
67 lines (61 loc) · 1.68 KB
/
test_MSRResNet_x4.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
# ----------- Commands for running
# ----------- Single GPU
# PYTHONPATH="./:${PYTHONPATH}" CUDA_VISIBLE_DEVICES=0 python basicsr/test.py -opt options/test/SRResNet_SRGAN/test_MSRResNet_x4.yml
# general settings
name: 001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb
model_type: SRModel
scale: 4
num_gpu: 1 # set num_gpu: 0 for cpu mode
manual_seed: 0
# test dataset settings
datasets:
test_1: # the 1st test dataset
name: Set5
type: PairedImageDataset
dataroot_gt: datasets/Set5/GTmod12
dataroot_lq: datasets/Set5/LRbicx4
io_backend:
type: disk
test_2: # the 2nd test dataset
name: Set14
type: PairedImageDataset
dataroot_gt: datasets/Set14/GTmod12
dataroot_lq: datasets/Set14/LRbicx4
io_backend:
type: disk
test_3: # the 3rd test dataset
name: DIV2K100
type: PairedImageDataset
dataroot_gt: datasets/DIV2K/DIV2K_valid_HR
dataroot_lq: datasets/DIV2K/DIV2K_valid_LR_bicubic/X4
filename_tmpl: '{}x4'
io_backend:
type: disk
# network structures
network_g:
type: MSRResNet
num_in_ch: 3
num_out_ch: 3
num_feat: 64
num_block: 16
upscale: 4
# path
path:
pretrain_network_g: experiments/001_MSRResNet_x4_f64b16_DIV2K_1000k_B16G1_wandb/models/net_g_1000000.pth
param_key_g: params
strict_load_g: true
# validation settings
val:
save_img: true
suffix: ~ # add suffix to saved images, if None, use exp name
metrics:
psnr: # metric name, can be arbitrary
type: calculate_psnr
crop_border: 4
test_y_channel: false
better: higher # the higher, the better. Default: higher
ssim:
type: calculate_ssim
crop_border: 4
test_y_channel: false
better: higher