forked from HKU-Smart-Mobility-Lab/Ride-sharing-Simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
268 lines (223 loc) · 12 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#####################################################
###### Written by Wang CHEN ######
###### E-mail: [email protected] ######
###### Copyright @ Smart Mobility Lab ######
###### Department of Civil Engineering ######
###### Thu University of Hong Kong ######
#####################################################
from msilib.schema import Environment
from src.Environment import EnvironmentToyModel, ENVIRONMENT
from src.ControlCenter import ControlCenter
from run_episode import RunEpisode
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
import os
import logging
import argparse
import yaml
from easydict import EasyDict as edict
import numpy as np
import copy
def parse_args():
parser = argparse.ArgumentParser(description='Ride-pooling simulator')
# general
parser.add_argument('--cfg',
help='experiment configure file name',
required=True,
type=str)
parser.add_argument('--OutputDir',
help='output directory',
type=str,
default='./exp')
parser.add_argument('--device',
help='GPU or CPU',
type=str,
default='cuda')
parser.add_argument('--DrawResult',
help='Draw the result image of each step',
type=bool,
default=False)
parser.add_argument('--DrawDistribution',
help='Draw the distribution of vehicles and requests',
type=bool,
default=False)
args = parser.parse_args()
return args
def main():
args = parse_args()
# config file
with open(args.cfg) as f:
cfg = edict(yaml.load(f, Loader=yaml.FullLoader))
# log file
logger = logging.getLogger('')
# New output filefold
if not os.path.exists(args.OutputDir):
os.makedirs(args.OutputDir)
# New the output filefold of the current experiment
cfg_file_name = os.path.basename(args.cfg).split('.')[0]
if not os.path.exists(os.path.join(args.OutputDir, cfg_file_name)):
os.makedirs(os.path.join(args.OutputDir, cfg_file_name))
# New the image path
img_path = os.path.join(args.OutputDir, cfg_file_name, 'tmp')
if not os.path.exists(img_path):
os.makedirs(img_path)
# set the log file path
filehandler = logging.FileHandler(os.path.join(args.OutputDir, cfg_file_name, 'simulation.log'))
streamhandler = logging.StreamHandler()
logger.setLevel(logging.INFO)
logger.addHandler(filehandler)
logger.addHandler(streamhandler)
# Write config information
logger.info('******************************')
logger.info(cfg)
logger.info('******************************')
# For convenience, we load the configrations ahead of time
# For control center
start_timepoint = cfg.SIMULATION.START
end_timepoint = cfg.SIMULATION.END
step_time = cfg.SIMULATION.STEP_TIME
# For environment
velocity = cfg.VEHICLE.VELOCITY
consider_itinerary = cfg.ENVIRONMENT.CONSIDER_ITINERARY.TYPE
env_type = cfg.ENVIRONMENT.TYPE
# Initialize environment
if env_type == 'CITY':
# Initialize the environment
environment = ENVIRONMENT(cfg = cfg)
elif env_type == 'TOY':
# Initilize the Toy Model
environment = EnvironmentToyModel(num_nodes = cfg.ENVIRONMENT.TOY.NumNode,
distance_per_line = cfg.ENVIRONMENT.TOY.DisPerLine,
vehicle_velocity = velocity,
consider_congestion = False)
else:
raise NotImplementedError
# Initilize the control center
control_center = ControlCenter(cfg=cfg, environment = environment)
# Record the number of requests and vehicles
total_steps = int((end_timepoint - start_timepoint) / step_time - 1)
total_grids = int(cfg.ENVIRONMENT.CITY.X_GRID_NUM * cfg.ENVIRONMENT.CITY.Y_GRID_NUM)
logger.info('The number of steps: {}'.format(total_steps))
logger.info('The number of grids: {}'.format(total_grids))
logger.info('******************************')
# Record the results
def LogResults(logger, requests_results, vehicles_results):
# Requests
logger.info('Service rate (non-ride-pooling): {}'.format(requests_results[0]))
logger.info('Service rate (ride-pooling): {}'.format(requests_results[1]))
logger.info('The average assigning time (s): {}'.format(requests_results[2]))
logger.info('The average pick-up time (min): {}'.format(requests_results[3] / 60))
logger.info('The average detour time (min): {}'.format(requests_results[4] / 60))
logger.info('The average detour time ratio: {}'.format(requests_results[5]))
logger.info('The average total time ratio: {}'.format(requests_results[6]))
logger.info('The average detour distance (km): {}'.format(requests_results[7] / 1000))
logger.info('The average detour distance ratio:{}'.format(requests_results[8]))
logger.info('Cancellation rate (pickup): {}'.format(requests_results[9]))
logger.info('Cancellation rate (assign): {}'.format(requests_results[10]))
logger.info('Ratio of delivering time to shortest time(ft1):{}'.format(requests_results[11]))
logger.info('Ratio of delivering time to shortest time(ft2):{}'.format(requests_results[12]))
logger.info('******************************')
# Vehicles
logger.info('The average idle time(min): {}'.format(vehicles_results[1] / 60))
logger.info('The total income of all vehicles (USD): {}'.format(vehicles_results[2]))
logger.info('The total travel distance of all vehicles (km): {}'.format(vehicles_results[3] / 1000))
pooling_rates = cfg.REQUEST.POOLING_RATE
# simulation
for pooling_rate in pooling_rates:
# Load requests for test
test_data_path = cfg.REQUEST.DATA.TEST
requests, req_num, avg_trip_dis = control_center.RTV_system.InitializeRequests(test_data_path, pooling_rate=pooling_rate)
logger.info('The number of test requests: {} '.format(req_num))
veh_num = cfg.VEHICLE.NUM
# Load vehicles
vehicles = control_center.RTV_system.InitializeVehicles(cfg.VEHICLE.DATA, num_vehicles = veh_num, requests=requests)
environment.vehicles = vehicles
q = req_num / (end_timepoint - start_timepoint)
logger.info('******************************')
logger.info('The number of vehicles (N): {}'.format(veh_num))
logger.info('Request rate (q): {}'.format(q))
logger.info('Average trip distance (L): {}'.format(avg_trip_dis))
logger.info('Average vehicle velocity (v): {}'.format(velocity))
logger.info('Dimensionless parameter (Lq / vB):{}'.format(avg_trip_dis * q / velocity / veh_num))
logger.info('******************************')
# Draw the distribution of vehicles and requests
if args.DrawDistribution:
logger.info('Draw the distribution of distance and time of requests ...')
# time distribution
fig = plt.figure(figsize=(5,5), dpi=400)
ax = fig.add_subplot(111)
ax = control_center.post_process_system.ReqTimeSta(ax, requests=requests)
plt.subplots_adjust(left=0.15)
plt.savefig(os.path.join(args.OutputDir, cfg_file_name, 'ReqTimeDist.png'))
plt.close('all')
# distance distribution
fig = plt.figure(figsize=(5,5), dpi=400)
ax = fig.add_subplot(111)
ax = control_center.post_process_system.ReqDisSta(ax, requests=requests,MaxDis = 25, nor_fit = False)
plt.subplots_adjust(left=0.15)
plt.savefig(os.path.join(args.OutputDir, cfg_file_name, 'ReqDisDist.png'))
plt.close('all')
logger.info('******************************')
logger.info('Draw the distribution of vehicles and requests...')
fig_aspect_ratio = control_center.FigAspectRatio()
# requests (pickup positions)
fig = plt.figure(figsize=(15/fig_aspect_ratio*1.25,15), dpi=200)
ax = fig.add_subplot(111)
ax = control_center.DrawRoadNetwork(ax, TIME = False, congestion = False)
ax = control_center.DrawRequests(ax, requests, type = 'pickup', s = 15, count = True, cmap = 'Reds', cmax = 40, color = 'red', draw_grid = False)
plt.subplots_adjust(left=0.15)
plt.savefig(os.path.join(args.OutputDir, cfg_file_name, 'requests.png'))
plt.close('all')
# vehicles
fig = plt.figure(figsize=(15/fig_aspect_ratio,15), dpi=200)
ax = fig.add_subplot(111)
ax = control_center.DrawRoadNetwork(ax, TIME = False, congestion = False)
ax = control_center.DrawVehicles(ax, vehicles, v_size = 0.002)
plt.subplots_adjust(left=0.15)
plt.savefig(os.path.join(args.OutputDir, cfg_file_name, 'vehicles.png'))
plt.close('all')
# requests (dropoff positions)
# fig = plt.figure(figsize=(12,12))
# ax = fig.add_subplot(111)
# ax = control_center.DrawRequests(ax, requests, type = 'dropoff', radius = 0.0005)
# plt.savefig(os.path.join(args.OutputDir, cfg_file_name, 'requests_day' + str(day + 1) + '_dropoff.png'))
# plt.close('all')
# logger.info('done!')
logger.info('******************************')
break
epoch_num = 1
req_num_avg = 0
requests_results_all = []
vehicles_results_all = []
for i in range(epoch_num):
vehicles_tmp = copy.deepcopy(vehicles)
requests_tmp = copy.deepcopy(requests)
if args.DrawResult:
img_path = os.path.join(args.OutputDir, cfg_file_name,'tmp')
req_num = RunEpisode(requests_tmp, vehicles_tmp, control_center, draw_veh_req = True, draw_fre = 60, img_path=img_path)
# visualize the results
# control_center.MakeVedio(img_path=img_path, vedio_fps=5, vedio_path=os.path.join(args.OutputDir, cfg_file_name), vedio_name='Manhattan-v50-day'+ str(day) +'-fps5.mp4')
control_center.MakeVedio(img_path=img_path, vedio_fps=10, vedio_path=os.path.join(args.OutputDir, cfg_file_name), vedio_name='Chengdu-v800-pooling'+ str(pooling_rate) +'-fps10.mp4', del_img=False)
else:
req_num = RunEpisode(requests_tmp, vehicles_tmp, control_center, draw_veh_req = False)
req_num_avg += req_num
# Record the results
requests_results, vehicles_results = control_center.CalculateResults()
requests_results_all.append(requests_results)
vehicles_results_all.append(vehicles_results)
logger.info('****************** Simulation Polling rate: {} *********************'.format(pooling_rate))
LogResults(logger, requests_results, vehicles_results)
logger.info('The average number of requests in each vehicle: {}'.format(req_num))
logger.info('******************************')
# Reset control center
control_center.UpdateParameters(timepoint=start_timepoint, step=0)
# Average results
requests_results_all = np.array(requests_results_all).mean(axis = 0)
vehicles_results_all = np.array(vehicles_results_all).mean(axis = 0)
logger.info('****************** Simulation Average Results *********************')
LogResults(logger, requests_results_all, vehicles_results_all)
logger.info('The average number of requests in each vehicle: {}'.format(req_num_avg / epoch_num))
logger.info('******************************')
if __name__ == '__main__':
main()