-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstreamlit_run.py
75 lines (54 loc) · 2.05 KB
/
streamlit_run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
import streamlit as st
import os
import cv2
import numpy as np
# Constants
MIN_GREEN_HUE = 45
MAX_GREEN_HUE = 77
MIN_GREEN_SAT = 19
MAX_GREEN_SAT = 255
MIN_GREEN_VAL = 164
MAX_GREEN_VAL = 255
KERNEL_SIZE = (2, 2)
ERODE_ITERATIONS = 2
DILATE_ITERATIONS = 4
AREA_THRESHOLD = 500 # Minimum contour area to consider as a plant
def process_image(src_image):
# Convert the image to grayscale
gray = cv2.cvtColor(src_image, cv2.COLOR_BGR2GRAY)
# Convert the grayscale image to HSV color space
hsv = cv2.cvtColor(src_image, cv2.COLOR_BGR2HSV)
# Define the lower and upper bounds for green color
lower_green = np.array([MIN_GREEN_HUE, MIN_GREEN_SAT, MIN_GREEN_VAL])
upper_green = np.array([MAX_GREEN_HUE, MAX_GREEN_SAT, MAX_GREEN_VAL])
# Create a mask for green color
mask = cv2.inRange(hsv, lower_green, upper_green)
# Create a kernel for erosion and dilation
kernel = np.ones(KERNEL_SIZE, np.uint8)
# Apply morphological operations
masked = cv2.bitwise_and(gray, gray, mask=mask)
masked = cv2.threshold(masked, 5, 255, cv2.THRESH_BINARY)[1]
masked = cv2.erode(masked, kernel, iterations=ERODE_ITERATIONS)
masked = cv2.dilate(masked, kernel, iterations=DILATE_ITERATIONS)
# Find contours
contours, _ = cv2.findContours(
masked, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Process and count the contours
plants_number = 0
for contour in contours:
area = cv2.contourArea(contour)
if area > AREA_THRESHOLD:
plants_number += 1
return plants_number
def main():
st.title("Plant Counting Web App")
uploaded_image = st.file_uploader(
"Upload an image", type=["jpg", "jpeg", "png"])
if uploaded_image is not None:
image = cv2.imdecode(np.fromstring(uploaded_image.read(), np.uint8), 1)
st.image(image, caption="Uploaded Image", use_column_width=True)
st.write("Processing...")
plants_count = process_image(image)
st.success(f"Total number of plants: {plants_count}")
if __name__ == "__main__":
main()