-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathsvmtrain.c
472 lines (421 loc) · 11.1 KB
/
svmtrain.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#include "svm.h"
#include "mex.h"
#include "svm_model_matlab.h"
#if MX_API_VER < 0x07030000
typedef int mwIndex;
#endif
#define CMD_LEN 2048
#define Malloc(type,n) (type *)malloc((n)*sizeof(type))
void print_null(const char *s) {}
void print_string_matlab(const char *s) {mexPrintf(s);}
void exit_with_help()
{
mexPrintf(
"Usage: model = svmtrain(training_label_vector, training_instance_matrix, 'libsvm_options');\n"
"libsvm_options:\n"
"-s svm_type : set type of SVM (default 0)\n"
" 0 -- C-SVC\n"
" 1 -- nu-SVC\n"
" 2 -- one-class SVM\n"
" 3 -- epsilon-SVR\n"
" 4 -- nu-SVR\n"
"-t kernel_type : set type of kernel function (default 2)\n"
" 0 -- linear: u'*v\n"
" 1 -- polynomial: (gamma*u'*v + coef0)^degree\n"
" 2 -- radial basis function: exp(-gamma*|u-v|^2)\n"
" 3 -- sigmoid: tanh(gamma*u'*v + coef0)\n"
" 4 -- precomputed kernel (kernel values in training_instance_matrix)\n"
"-d degree : set degree in kernel function (default 3)\n"
"-g gamma : set gamma in kernel function (default 1/num_features)\n"
"-r coef0 : set coef0 in kernel function (default 0)\n"
"-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)\n"
"-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)\n"
"-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)\n"
"-m cachesize : set cache memory size in MB (default 100)\n"
"-e epsilon : set tolerance of termination criterion (default 0.001)\n"
"-h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)\n"
"-b probability_estimates : whether to train a SVC or SVR model for probability estimates, 0 or 1 (default 0)\n"
"-wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)\n"
"-v n : n-fold cross validation mode\n"
"-q : quiet mode (no outputs)\n"
);
}
// svm arguments
struct svm_parameter param; // set by parse_command_line
struct svm_problem prob; // set by read_problem
struct svm_model *model;
struct svm_node *x_space;
int cross_validation;
int nr_fold;
double do_cross_validation()
{
int i;
int total_correct = 0;
double total_error = 0;
double sumv = 0, sumy = 0, sumvv = 0, sumyy = 0, sumvy = 0;
double *target = Malloc(double,prob.l);
double retval = 0.0;
svm_cross_validation(&prob,¶m,nr_fold,target);
if(param.svm_type == EPSILON_SVR ||
param.svm_type == NU_SVR)
{
for(i=0;i<prob.l;i++)
{
double y = prob.y[i];
double v = target[i];
total_error += (v-y)*(v-y);
sumv += v;
sumy += y;
sumvv += v*v;
sumyy += y*y;
sumvy += v*y;
}
mexPrintf("Cross Validation Mean squared error = %g\n",total_error/prob.l);
mexPrintf("Cross Validation Squared correlation coefficient = %g\n",
((prob.l*sumvy-sumv*sumy)*(prob.l*sumvy-sumv*sumy))/
((prob.l*sumvv-sumv*sumv)*(prob.l*sumyy-sumy*sumy))
);
retval = total_error/prob.l;
}
else
{
for(i=0;i<prob.l;i++)
if(target[i] == prob.y[i])
++total_correct;
mexPrintf("Cross Validation Accuracy = %g%%\n",100.0*total_correct/prob.l);
retval = 100.0*total_correct/prob.l;
}
free(target);
return retval;
}
// nrhs should be 3
int parse_command_line(int nrhs, const mxArray *prhs[], char *model_file_name)
{
int i, argc = 1;
char cmd[CMD_LEN];
char *argv[CMD_LEN/2];
void (*print_func)(const char *) = print_string_matlab; // default printing to matlab display
// default values
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0; // 1/num_features
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 100;
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1;
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
cross_validation = 0;
if(nrhs <= 1)
return 1;
if(nrhs > 2)
{
// put options in argv[]
mxGetString(prhs[2], cmd, mxGetN(prhs[2]) + 1);
if((argv[argc] = strtok(cmd, " ")) != NULL)
while((argv[++argc] = strtok(NULL, " ")) != NULL)
;
}
// parse options
for(i=1;i<argc;i++)
{
if(argv[i][0] != '-') break;
++i;
if(i>=argc && argv[i-1][1] != 'q') // since option -q has no parameter
return 1;
switch(argv[i-1][1])
{
case 's':
param.svm_type = atoi(argv[i]);
break;
case 't':
param.kernel_type = atoi(argv[i]);
break;
case 'd':
param.degree = atoi(argv[i]);
break;
case 'g':
param.gamma = atof(argv[i]);
break;
case 'r':
param.coef0 = atof(argv[i]);
break;
case 'n':
param.nu = atof(argv[i]);
break;
case 'm':
param.cache_size = atof(argv[i]);
break;
case 'c':
param.C = atof(argv[i]);
break;
case 'e':
param.eps = atof(argv[i]);
break;
case 'p':
param.p = atof(argv[i]);
break;
case 'h':
param.shrinking = atoi(argv[i]);
break;
case 'b':
param.probability = atoi(argv[i]);
break;
case 'q':
print_func = &print_null;
i--;
break;
case 'v':
cross_validation = 1;
nr_fold = atoi(argv[i]);
if(nr_fold < 2)
{
mexPrintf("n-fold cross validation: n must >= 2\n");
return 1;
}
break;
case 'w':
++param.nr_weight;
param.weight_label = (int *)realloc(param.weight_label,sizeof(int)*param.nr_weight);
param.weight = (double *)realloc(param.weight,sizeof(double)*param.nr_weight);
param.weight_label[param.nr_weight-1] = atoi(&argv[i-1][2]);
param.weight[param.nr_weight-1] = atof(argv[i]);
break;
default:
mexPrintf("Unknown option -%c\n", argv[i-1][1]);
return 1;
}
}
svm_set_print_string_function(print_func);
return 0;
}
// read in a problem (in svmlight format)
int read_problem_dense(const mxArray *label_vec, const mxArray *instance_mat)
{
int i, j, k;
int elements, max_index, sc, label_vector_row_num;
double *samples, *labels;
prob.x = NULL;
prob.y = NULL;
x_space = NULL;
labels = mxGetPr(label_vec);
samples = mxGetPr(instance_mat);
sc = (int)mxGetN(instance_mat);
elements = 0;
// the number of instance
prob.l = (int)mxGetM(instance_mat);
label_vector_row_num = (int)mxGetM(label_vec);
if(label_vector_row_num!=prob.l)
{
mexPrintf("Length of label vector does not match # of instances.\n");
return -1;
}
if(param.kernel_type == PRECOMPUTED)
elements = prob.l * (sc + 1);
else
{
for(i = 0; i < prob.l; i++)
{
for(k = 0; k < sc; k++)
if(samples[k * prob.l + i] != 0)
elements++;
// count the '-1' element
elements++;
}
}
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct svm_node *,prob.l);
x_space = Malloc(struct svm_node, elements);
max_index = sc;
j = 0;
for(i = 0; i < prob.l; i++)
{
prob.x[i] = &x_space[j];
prob.y[i] = labels[i];
for(k = 0; k < sc; k++)
{
if(param.kernel_type == PRECOMPUTED || samples[k * prob.l + i] != 0)
{
x_space[j].index = k + 1;
x_space[j].value = samples[k * prob.l + i];
j++;
}
}
x_space[j++].index = -1;
}
if(param.gamma == 0 && max_index > 0)
param.gamma = 1.0/max_index;
if(param.kernel_type == PRECOMPUTED)
for(i=0;i<prob.l;i++)
{
if((int)prob.x[i][0].value <= 0 || (int)prob.x[i][0].value > max_index)
{
mexPrintf("Wrong input format: sample_serial_number out of range\n");
return -1;
}
}
return 0;
}
int read_problem_sparse(const mxArray *label_vec, const mxArray *instance_mat)
{
int i, j, k, low, high;
mwIndex *ir, *jc;
int elements, max_index, num_samples, label_vector_row_num;
double *samples, *labels;
mxArray *instance_mat_col; // transposed instance sparse matrix
prob.x = NULL;
prob.y = NULL;
x_space = NULL;
// transpose instance matrix
{
mxArray *prhs[1], *plhs[1];
prhs[0] = mxDuplicateArray(instance_mat);
if(mexCallMATLAB(1, plhs, 1, prhs, "transpose"))
{
mexPrintf("Error: cannot transpose training instance matrix\n");
return -1;
}
instance_mat_col = plhs[0];
mxDestroyArray(prhs[0]);
}
// each column is one instance
labels = mxGetPr(label_vec);
samples = mxGetPr(instance_mat_col);
ir = mxGetIr(instance_mat_col);
jc = mxGetJc(instance_mat_col);
num_samples = (int)mxGetNzmax(instance_mat_col);
// the number of instance
prob.l = (int)mxGetN(instance_mat_col);
label_vector_row_num = (int)mxGetM(label_vec);
if(label_vector_row_num!=prob.l)
{
mexPrintf("Length of label vector does not match # of instances.\n");
return -1;
}
elements = num_samples + prob.l;
max_index = (int)mxGetM(instance_mat_col);
prob.y = Malloc(double,prob.l);
prob.x = Malloc(struct svm_node *,prob.l);
x_space = Malloc(struct svm_node, elements);
j = 0;
for(i=0;i<prob.l;i++)
{
prob.x[i] = &x_space[j];
prob.y[i] = labels[i];
low = (int)jc[i], high = (int)jc[i+1];
for(k=low;k<high;k++)
{
x_space[j].index = (int)ir[k] + 1;
x_space[j].value = samples[k];
j++;
}
x_space[j++].index = -1;
}
if(param.gamma == 0 && max_index > 0)
param.gamma = 1.0/max_index;
return 0;
}
static void fake_answer(mxArray *plhs[])
{
plhs[0] = mxCreateDoubleMatrix(0, 0, mxREAL);
}
// Interface function of matlab
// now assume prhs[0]: label prhs[1]: features
void mexFunction( int nlhs, mxArray *plhs[],
int nrhs, const mxArray *prhs[] )
{
const char *error_msg;
// fix random seed to have same results for each run
// (for cross validation and probability estimation)
srand(1);
// Transform the input Matrix to libsvm format
if(nrhs > 1 && nrhs < 4)
{
int err;
if(!mxIsDouble(prhs[0]) || !mxIsDouble(prhs[1])) {
mexPrintf("Error: label vector and instance matrix must be double\n");
fake_answer(plhs);
return;
}
if(parse_command_line(nrhs, prhs, NULL))
{
exit_with_help();
svm_destroy_param(¶m);
fake_answer(plhs);
return;
}
if(mxIsSparse(prhs[1]))
{
if(param.kernel_type == PRECOMPUTED)
{
// precomputed kernel requires dense matrix, so we make one
mxArray *rhs[1], *lhs[1];
rhs[0] = mxDuplicateArray(prhs[1]);
if(mexCallMATLAB(1, lhs, 1, rhs, "full"))
{
mexPrintf("Error: cannot generate a full training instance matrix\n");
svm_destroy_param(¶m);
fake_answer(plhs);
return;
}
err = read_problem_dense(prhs[0], lhs[0]);
mxDestroyArray(lhs[0]);
mxDestroyArray(rhs[0]);
}
else
err = read_problem_sparse(prhs[0], prhs[1]);
}
else
err = read_problem_dense(prhs[0], prhs[1]);
// svmtrain's original code
error_msg = svm_check_parameter(&prob, ¶m);
if(err || error_msg)
{
if (error_msg != NULL)
mexPrintf("Error: %s\n", error_msg);
svm_destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
fake_answer(plhs);
return;
}
if(cross_validation)
{
double *ptr;
plhs[0] = mxCreateDoubleMatrix(1, 1, mxREAL);
ptr = mxGetPr(plhs[0]);
ptr[0] = do_cross_validation();
}
else
{
int nr_feat = (int)mxGetN(prhs[1]);
const char *error_msg;
model = svm_train(&prob, ¶m);
error_msg = model_to_matlab_structure(plhs, nr_feat, model);
if(error_msg)
mexPrintf("Error: can't convert libsvm model to matrix structure: %s\n", error_msg);
svm_free_and_destroy_model(&model);
}
svm_destroy_param(¶m);
free(prob.y);
free(prob.x);
free(x_space);
}
else
{
exit_with_help();
fake_answer(plhs);
return;
}
}