-
Notifications
You must be signed in to change notification settings - Fork 7
94 lines (93 loc) · 1.45 KB
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
%function [P, Tc , targets] = getsubj2(n)
n=1;
if(n>5)
disp 'nonsense'
pause
end
load eegdata;
%% first
task1 = data{n}{4};
t = [];
for i = 1:1:5
t = [t ; task1(i,:)];
end
for i = 1:1:5
set{i} = reshape(t(i,:),100,25);
end
f1 = [];
for i =1:1:5
f1 =[f1; getfeatures(set{i})];
end
%% second
n= n +5;
task2 = data{n}{4};
t = [];
for i = 1:1:5
t = [t ; task2(i,:)];
end
for i = 1:1:5
set{i} = reshape(t(i,:),100,25);
end
f2 = [];
for i =1:1:5
f2 =[f2; getfeatures(set{i})];
end
%% third
task3 = data{n}{4};
t = [];
for i = 1:1:5
t = [t ; task3(i,:)];
end
for i = 1:1:5
set{i} = reshape(t(i,:),100,25);
end
f3 = [];
for i =1:1:5
f3 =[f3; getfeatures(set{i})];
end
%% 4th
n= n +5;
task4 = data{n}{4};
t = [];
for i = 1:1:5
t = [t ; task4(i,:)];
end
for i = 1:1:5
set{i} = reshape(t(i,:),100,25);
end
f4 = [];
for i =1:1:5
f4 =[f4; getfeatures(set{i})];
end
%% fifth
n= n +5;
task = data{n}{4};
t = [];
for i = 1:1:5
t = [t ; task(i,:)];
end
for i = 1:1:5
set{i} = reshape(t(i,:),100,25);
end
f5 = [];
for i =1:1:5
f5 =[f5; getfeatures(set{i})];
end
%%
t1 = [1 1 1 1 1];
t2 = [2 2 2 2 2];
t3 = [3 3 3 3 3];
t4 = [4 4 4 4 4];
t5 = [5 5 5 5 5];
P = [f1 f2 f3 f4 f5]';
%LVQ
Tc = [t1 t1 t1 t1 t1 t2 t2 t2 t2 t2 t3 t3 t3 t3 t3 t4 t4 t4 t4 t4 t5 t5 t5 t5 t5]';
T = ind2vec(Tc);
targets = full(T);
net = newlvq(P,4,[0.2 0.2 0.2 0.2 0.2]);
net.trainParam.epochs = 1000;
[net,tr,Y,E,Pf,Af] = train(net,P,targets);
Y = sim(net,P);
Yc = vec2ind(Y);
c = confusion(targets,Y);
acc = (1-c)*100;