-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_normalizer.py
206 lines (160 loc) · 5.63 KB
/
data_normalizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import io
import os
from absl import logging
import numpy as np
import tensorflow.compat.v1 as tf
def _range_normalizer(x, margin):
x = x.flatten()
min_x = np.min(x)
max_x = np.max(x)
a = margin * (2.0 / (max_x - min_x))
b = margin * (-2.0 * min_x / (max_x - min_x) - 1.0)
return a, b
class DataNormalizer(object):
"""A class to normalize data."""
def __init__(self, config, file_name):
self._work_dir = os.path.join(config['train_root_dir'], 'assets')
self._margin = config['normalizer_margin']
self._path = os.path.join(self._work_dir, file_name)
self._done_path = os.path.join(self._work_dir, 'DONE_' + file_name)
self._num_examples = config['normalizer_num_examples']
def _run_data(self, data):
"""Runs data in session to get data_np."""
if data is None:
return None
data_np = []
count_examples = 0
with tf.MonitoredTrainingSession() as sess:
while count_examples < self._num_examples:
out = sess.run(data)
data_np.append(out)
count_examples += out.shape[0]
data_np = np.concatenate(data_np, axis=0)
return data_np
def compute(self, data_np):
"""Computes normalizer."""
raise NotImplementedError
def exists(self):
return tf.gfile.Exists(self._done_path)
def save(self, data):
"""Computes and saves normalizer."""
if self.exists():
logging.info('Skip save() as %s already exists', self._done_path)
return
data_np = self._run_data(data)
normalizer = self.compute(data_np)
logging.info('Save normalizer to %s', self._path)
bytes_io = io.BytesIO()
np.savez(bytes_io, normalizer=normalizer)
if not tf.gfile.Exists(self._work_dir):
tf.gfile.MakeDirs(self._work_dir)
with tf.gfile.Open(self._path, 'wb') as f:
f.write(bytes_io.getvalue())
with tf.gfile.Open(self._done_path, 'w') as f:
f.write('')
return normalizer
def load(self):
"""Loads normalizer."""
logging.info('Load data from %s', self._path)
with tf.gfile.Open(self._path, 'rb') as f:
result = np.load(f)
return result['normalizer']
def normalize_op(self, x):
raise NotImplementedError
def denormalize_op(self, x):
raise NotImplementedError
class NoneNormalizer(object):
"""A dummy class that does not normalize data."""
def __init__(self, unused_config=None):
pass
def save(self, data):
pass
def load(self):
pass
def exists(self):
return True
def normalize_op(self, x):
return x
def denormalize_op(self, x):
return x
class SpecgramsPrespecifiedNormalizer(object):
"""A class that uses prespecified normalization data."""
def __init__(self, config):
m_a = config['mag_normalizer_a']
m_b = config['mag_normalizer_b']
p_a = config['p_normalizer_a']
p_b = config['p_normalizer_b']
self._a = np.asarray([m_a, p_a])[None, None, None, :]
self._b = np.asarray([m_b, p_b])[None, None, None, :]
def exists(self):
return True
def save(self, data):
pass
def load(self):
pass
def normalize_op(self, x):
return tf.clip_by_value(self._a * x + self._b, -1.0, 1.0)
def denormalize_op(self, x):
return (x - self._b) / self._a
class SpecgramsSimpleNormalizer(DataNormalizer):
"""A class to normalize specgrams for each channel."""
def __init__(self, config):
super(SpecgramsSimpleNormalizer, self).__init__(
config, 'specgrams_simple_normalizer.npz')
def compute(self, data_np):
m_a, m_b = _range_normalizer(data_np[:, :, :, 0], self._margin)
p_a, p_b = _range_normalizer(data_np[:, :, :, 1], self._margin)
return np.asarray([m_a, m_b, p_a, p_b])
def load_and_decode(self):
m_a, m_b, p_a, p_b = self.load()
a = np.asarray([m_a, p_a])[None, None, None, :]
b = np.asarray([m_b, p_b])[None, None, None, :]
return a, b
def normalize_op(self, x):
a, b = self.load_and_decode()
a = tf.constant(a, dtype=x.dtype)
b = tf.constant(b, dtype=x.dtype)
return tf.clip_by_value(a * x + b, -1.0, 1.0)
def denormalize_op(self, x):
a, b = self.load_and_decode()
a = tf.constant(a, dtype=x.dtype)
b = tf.constant(b, dtype=x.dtype)
return (x - b) / a
class SpecgramsFreqNormalizer(DataNormalizer):
"""A class to normalize specgrams for each freq bin, channel."""
def __init__(self, config):
super(SpecgramsFreqNormalizer, self).__init__(
config, 'specgrams_freq_normalizer.npz')
def compute(self, data_np):
# data_np: [N, time, freq, channels]
normalizer = []
for f in range(data_np.shape[2]):
m_a, m_b = _range_normalizer(data_np[:, :, f, 0], self._margin)
p_a, p_b = _range_normalizer(data_np[:, :, f, 1], self._margin)
normalizer.append([m_a, m_b, p_a, p_b])
return np.asarray(normalizer)
def load_and_decode(self):
normalizer = self.load()
m_a = normalizer[:, 0][None, None, :, None]
m_b = normalizer[:, 1][None, None, :, None]
p_a = normalizer[:, 2][None, None, :, None]
p_b = normalizer[:, 3][None, None, :, None]
a = np.concatenate([m_a, p_a], axis=-1)
b = np.concatenate([m_b, p_b], axis=-1)
return a, b
def normalize_op(self, x):
a, b = self.load_and_decode()
a = tf.constant(a, dtype=x.dtype)
b = tf.constant(b, dtype=x.dtype)
return tf.clip_by_value(a * x + b, -1.0, 1.0)
def denormalize_op(self, x):
a, b = self.load_and_decode()
a = tf.constant(a, dtype=x.dtype)
b = tf.constant(b, dtype=x.dtype)
return (x - b) / a
registry = {
'none': NoneNormalizer,
'specgrams_prespecified_normalizer': SpecgramsPrespecifiedNormalizer,
'specgrams_simple_normalizer': SpecgramsSimpleNormalizer,
'specgrams_freq_normalizer': SpecgramsFreqNormalizer
}