-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_coco.py
266 lines (222 loc) · 10.5 KB
/
train_coco.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from torch.utils import data
import torch.optim as optim
import torch.backends.cudnn as cudnn
from utils import *
import time
import torch.nn.functional as F
import random
import argparse
import os
import torch
import torch.nn as nn
import numpy as np
from coco_train import Dataset as dataset_train
from coco_val2 import Dataset as dataset_val
#from backbone_afterMaskPooling import network
#from backbone_before import network
from backbone_nn import network
parser = argparse.ArgumentParser()
parser.add_argument('-lr',
type=float,
help='SGD learning rate',
default=0.0025)
parser.add_argument('-input_size',
type=list,
help='input_size',
default=[353, 353])
parser.add_argument('-weight_decay',
type=float,
help='SGD weight decay',
default=5e-4)
parser.add_argument('-momentum',
type=float,
help='SGD momentum',
default=0.9)
parser.add_argument('-fold',
type=int,
help='fold',
default=0)
parser.add_argument('-gpu',
type=str,
help='gpu id to use',
default='0')
parser.add_argument('-batch_size',
type=int,
help='batch size',
default='32')
parser.add_argument('-num_epoch',
type=int,
help='num epoch',
default=1000)
parser.add_argument('-mask_dir',
type=str,
help='mask dir',
default='/mnt/lustre/share/wangbairun/mscoco2014_mask/')
parser.add_argument('-data_dir',
type=str,
help='data dir',
default='/mnt/lustre/share/zhangmingyuan/datasets/mscoco2014')
parser.add_argument('-checkpoint_dir',
type=str,
help='checkpoint dir',
default='/mnt/lustre/wangbairun/CANet_Modified/channelwise_attention/checkpoint/')
parser.add_argument('-alpha',
type=float,
help='loss weight',
default=1.0)
parser.add_argument('-beta',
type=float,
help='aux seg loss weight',
default=1.0)
# config = Config()
args = parser.parse_args()
print(args)
category = [['aeroplane', 'bicycle', 'bird', 'boat', 'bottle'],
['bus', 'car', 'cat', 'chair', 'cow'],
['diningtable', 'dog', 'horse', 'motorbike', 'person'],
['potted plant', 'sheep', 'sofa', 'train', 'tv/monitor']
]
# checkpoint_dir = os.path.join(args.checkpoint_dir, 'fold_%d' % args.fold)
checkpoint_dir = args.checkpoint_dir
print(category[args.fold])
log_path = os.path.join(checkpoint_dir, 'train_log_w%e.csv' %args.weight_decay)
print('train log path: ', log_path)
# set gpus
# gpu_list = [int(x) for x in config.gpu.split(',')]
# os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID'
# os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
torch.backends.cudnn.benchmark = True
cudnn.enabled = True
# Create network.
model = network()
# print('Load model with template')
model = nn.DataParallel(model)
# load resnet-50 preatrained parameter
model = load_resnet_param(model, stop_layer='layer4', layer_num=50)
# disable the gradients of not optomized layers
turn_off(model, is_layer4_available=False)
if not os.path.exists(checkpoint_dir):
os.makedirs(os.path.join(checkpoint_dir))
bottom_line_list = [0.2]*4
bottom_line = bottom_line_list[args.fold]
model_name = None
for file in os.listdir(checkpoint_dir):
if file[:5]=='model' and len(file)>20:
model_acc = float(file.split("-")[3][:6])
if model_acc>=bottom_line:
model_name = file
bottom_line = model_acc
if model_name != None:
print("Load model path: ", os.path.join(checkpoint_dir, model_name))
model.load_state_dict(torch.load(os.path.join(checkpoint_dir, model_name)),strict=False)
dataset = dataset_train(data_dir=args.data_dir, mask_dir=args.mask_dir, fold=args.fold, input_size=args.input_size)
trainloader = data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True, num_workers=4)
valset = dataset_val(data_dir=args.data_dir, mask_dir=args.mask_dir, fold=args.fold, input_size=args.input_size)
valloader = data.DataLoader(valset, batch_size=args.batch_size, shuffle=False, num_workers=4, drop_last=False)
save_pred_every = len(trainloader)
print('fold: %d Train: %d Val: %d' % (args.fold, len(dataset), len(valset)))
optimizer = optim.SGD(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
best_iou = 0
best_epoch = -1
history_doc = ['train loss',
'val loss',
category[args.fold][0],
category[args.fold][1],
category[args.fold][2],
category[args.fold][3],
category[args.fold][4],
'val iou'
]
# wirte_csv(history_doc, log_path)
model.cuda()
model = model.train()
for epoch in range(args.num_epoch):
# if epoch>=args.num_epoch-10:
# turn_on(model, is_layer4_available=False)
adjust_learning_rate(optimizer, args.lr, epoch, 20)
accumulated_loss = 0
begin_time = time.time()
history_doc = []
for i_iter, batch_data in enumerate(trainloader):
query_img, query_mask, support_img, support_mask, sample_class, index = batch_data
query_img = query_img.cuda()
support_img = support_img.cuda()
support_mask = support_mask.cuda()
query_mask = query_mask.cuda() # change formation for crossentropy use
# remove the second dim,change formation for crossentropy use
sample_class = sample_class.cuda()
optimizer.zero_grad()
final_mask, pre_mask,cls_s = model(query_img, support_img, support_mask)
# final_mask, cls_s = model(query_img, support_img, support_mask)
final_mask = nn.functional.interpolate(final_mask, size=args.input_size, mode='bilinear', align_corners=True)
pre_mask = nn.functional.interpolate(pre_mask, size=args.input_size, mode='bilinear', align_corners=True)
query_mask = query_mask[:, 0, :, :]
# cross_entropy_final = cross_entropy_calc(final_mask, query_mask, weight=torch.tensor([1., 5.]))
# cross_entropy_aux = cross_entropy_calc(pre_mask, query_mask, weight=torch.tensor([1., 5.]))
cross_entropy_final = cross_entropy_calc(final_mask, query_mask)
cross_entropy_aux = cross_entropy_calc(pre_mask, query_mask)
cross_entropy_s = cross_entropy_calc(cls_s,sample_class)
# cross_entropy_q = cross_entropy_calc(cls_q, sample_class)
# loss = cross_entropy_final + args.alpha*cross_entropy_s
loss = cross_entropy_final + args.beta*cross_entropy_aux + args.alpha*cross_entropy_s
# loss = cross_entropy_final
#loss = cross_entropy_aux + args.alpha*cross_entropy_s
loss.backward()
optimizer.step()
_, pred_cls = torch.max(cls_s, dim=1)
acc = (pred_cls == sample_class).sum().item()/sample_class.size(0)
# 2-loss
if i_iter%40==0:
print('Epoch %3d: %4d/%d | Loss: %.6f = %.6f + %.1f*%.6f + %.1f*%.6f | Accuracy: %.4f'
% (epoch, i_iter+1, save_pred_every, loss.item(), cross_entropy_final.item(), args.beta, cross_entropy_aux.item(), args.alpha, cross_entropy_s, acc))
# print('Epoch %3d: %4d/%d | Loss: %.6f = %.6f + %.1f*%.6f | Accuracy: %.4f'
# % (epoch, i_iter+1, save_pred_every, loss.item(), cross_entropy_final.item(), args.alpha, cross_entropy_s.item(), acc))
accumulated_loss += loss.item()
history_doc.append(accumulated_loss / save_pred_every)
print('----Evaluation----')
with torch.no_grad():
accumulated_loss = 0
model = model.eval()
all_inter, all_union, all_predict = [0] * 20, [0] * 20, [0] * 20
for i_iter, batch_data in enumerate(valloader):
query_img, query_mask, support_img, support_mask, sample_class = batch_data
query_img = query_img.cuda()
query_mask = query_mask.cuda()
support_img = support_img.cuda()
support_mask = support_mask.cuda()
query_mask = query_mask[:, 0, :, :]
final_mask = model(query_img, support_img, support_mask)
final_mask = nn.functional.interpolate(final_mask, size=query_mask.shape[-2:], mode='bilinear', align_corners=True)
cross_entropy_final = cross_entropy_calc(final_mask, query_mask)
accumulated_loss += cross_entropy_final.item()
_, pred_label = torch.max(final_mask, 1)
pred_label = pred_label.data.cpu()
inter_list, union_list, _, num_predict_list = get_iou(query_mask.cpu().long(), pred_label)
for j in range(query_mask.shape[0]): # watch out last drop last!!(!=batch size)
all_inter[sample_class[j] - (args.fold * 0)] += inter_list[j]
all_union[sample_class[j] - (args.fold * 0)] += union_list[j]
history_doc.append(accumulated_loss / len(valloader))
IOU = [0] * 20
for j in range(20):
IOU[j] = all_inter[j] / all_union[j]
history_doc.append(IOU[j])
mean_iou = np.mean(IOU)
history_doc.append(mean_iou) # val iou
print('Epoch: %d | IOU: %.4f | Learning rate: %.7f' % (epoch, mean_iou, optimizer.param_groups[0]['lr']))
if mean_iou > best_iou:
if mean_iou>best_iou:
best_iou = mean_iou
best_epoch = epoch
if mean_iou > bottom_line:
model = model.eval()
torch.save(model.cpu().state_dict(), os.path.join(checkpoint_dir,'model-%d-%.4f-%.4f-%e.pth' %(epoch, history_doc[1], mean_iou, args.weight_decay)))
model = model.train()
print('A better model is saved')
# print('Best IOU Up to Now: %.4f' % (best_iou))
model = model.train()
model.cuda()
epoch_time = time.time() - begin_time
# wirte_csv(history_doc, log_path)
print('Best epoch: %d, Best IoU: %.4f' % (best_epoch, best_iou))
print('This epoch takes:', epoch_time / 60, 'mins')
print('Still need %.4f hours' % ((args.num_epoch - epoch) * epoch_time / 3600))