forked from blei-lab/hlda
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdoc.c
executable file
·423 lines (355 loc) · 10.7 KB
/
doc.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
#include "doc.h"
/*
* resample the levels of a document
*
*/
void doc_sample_levels(doc* d,
short do_permute,
short do_remove)
{
int i;
int depth = d->path[0]->tr->depth;
gsl_vector* log_prob = gsl_vector_alloc(depth);
if (do_permute == 1)
{
gsl_permutation* p = rpermutation(d->levels->size);
iv_permute_from_perm(d->levels, p);
iv_permute_from_perm(d->word, p);
gsl_permutation_free(p);
}
// resample levels
for (i = 0; i < d->word->size; i++)
{
int w = ivget(d->word, i);
if (do_remove == 1)
{
int l = ivget(d->levels, i);
doc_update_level(d, l, -1.0);
topic_update_word(d->path[l], w, -1.0);
}
// compute probabilties
int k;
compute_log_p_level(d, *(d->gem_mean), *(d->gem_scale));
for (k = 0; k < depth; k++)
{
vset(log_prob, k,
vget(d->log_p_level, k) +
vget(d->path[k]->log_prob_w, w));
}
// sample new level and update
int new_l = sample_from_log(log_prob);
topic_update_word(d->path[new_l], w, 1.0);
ivset(d->levels, i, new_l);
// !!! this should take the word position, and remove or add it
doc_update_level(d, new_l, 1.0);
}
gsl_vector_free(log_prob);
}
/*
compute the log probability of each level, conditioned on the
current level counts
*/
void compute_log_p_level(doc* d, double gem_mean, double gem_scale)
{
// first, compute E[stick size]
double levels_sum = sum(d->tot_levels);
double sum_log_prob = 0;
double last_section = 0;
int i;
for (i = 0; i < d->tot_levels->size-1; i++)
{
levels_sum -= vget(d->tot_levels, i);
double expected_stick_len =
((1 - gem_mean) * gem_scale + vget(d->tot_levels, i)) /
(gem_scale + vget(d->tot_levels, i) + levels_sum);
vset(d->log_p_level,
i,
log(expected_stick_len) + sum_log_prob);
if (i == 0)
last_section = vget(d->log_p_level, i);
else
last_section = log_sum(vget(d->log_p_level, i), last_section);
sum_log_prob += log(1 - expected_stick_len);
}
last_section = log(1.0 - exp(last_section));
vset(d->log_p_level, d->tot_levels->size-1, last_section);
}
/*
* update the level counts
*
*/
void doc_update_level(doc* d, int l, double update)
{
vinc(d->tot_levels, l, update);
}
/*
* read corpus from data
*
*/
void read_corpus(char* data_filename, corpus* c, int depth)
{
outlog("READING CORPUS FROM %s", data_filename);
FILE *fileptr;
int nunique, count, word, n, i, total = 0;
doc *d;
c->nterms = 0;
c->ndoc = 0;
fileptr = fopen(data_filename, "r");
while (fscanf(fileptr, "%10d", &nunique) != EOF)
{
c->ndoc = c->ndoc + 1;
if ((c->ndoc % 100) == 0) outlog("read doc %d", c->ndoc);
c->doc = (doc**) realloc(c->doc, sizeof(doc*) * c->ndoc);
c->doc[c->ndoc-1] = malloc(sizeof(doc));
d = c->doc[c->ndoc-1];
d->id = c->ndoc-1;
d->word = new_int_vector(0);
// read document
for (n = 0; n < nunique; n++)
{
fscanf(fileptr, "%10d:%10d", &word, &count);
total += count;
word = word - OFFSET;
assert(word >= 0);
if (word >= c->nterms)
{
c->nterms = word + 1;
}
for (i = 0; i < count; i++)
{
ivappend(d->word, word);
}
}
// set up gibbs state variables
d->levels = new_int_vector(d->word->size);
d->path = malloc(sizeof(topic*) * depth);
d->tot_levels = gsl_vector_calloc(depth);
d->log_p_level = gsl_vector_calloc(depth);
d->gem_mean = &(c->gem_mean);
d->gem_scale = &(c->gem_scale);
for (n = 0; n < d->levels->size; n++)
ivset(d->levels, n, -1);
}
fclose(fileptr);
outlog("number of docs : %d", c->ndoc);
outlog("number of words : %d", c->nterms);
outlog("total word count : %d", total);
}
/*
* allocate a new corpus
*
*/
corpus* corpus_new(double gem_mean, double gem_scale)
{
corpus* c = malloc(sizeof(corpus));
c->gem_mean = gem_mean;
c->gem_scale = gem_scale;
c->ndoc = 0;
c->doc = malloc(sizeof(doc*) * c->ndoc);
return(c);
}
void free_corpus(corpus* corp)
{
int d;
for (d = 0; d < corp->ndoc; d++)
{
free_doc(corp->doc[d]);
}
free(corp->doc);
free(corp);
}
void free_doc(doc* d)
{
delete_int_vector(d->word);
delete_int_vector(d->levels);
gsl_vector_free(d->tot_levels);
gsl_vector_free(d->log_p_level);
free(d);
}
/*
* write corpus assignment
* each line contains a space delimited list of topic IDs
*
*/
void write_corpus_assignment(corpus* corp, FILE* file)
{
int d, l;
int depth = corp->doc[0]->path[0]->tr->depth;
for (d = 0; d < corp->ndoc; d++)
{
fprintf(file, "%d", corp->doc[d]->id);
fprintf(file, " %1.9e", (corp->doc[d]->score /
(double) corp->doc[d]->word->size));
for (l = 0; l < depth; l++)
{
fprintf(file, " %d", corp->doc[d]->path[l]->id);
}
fprintf(file, "\n");
}
}
void write_corpus_levels(corpus* corp, FILE* file)
{
outlog("writing all corpus level variables");
int d, n;
for (d = 0; d < corp->ndoc; d++)
{
for (n = 0; n < corp->doc[d]->word->size; n++)
{
if (n > 0) fprintf(file, " ");
fprintf(file, "%d:%d",
ivget(corp->doc[d]->word, n),
ivget(corp->doc[d]->levels, n));
}
fprintf(file, "\n");
}
}
/*
* corpus score (i.e., GEM score)
*
*/
double gem_score(corpus* corp)
{
double score = 0;
int depth = corp->doc[0]->path[0]->tr->depth;
double prior_a = (1 - corp->gem_mean) * corp->gem_scale;
double prior_b = corp->gem_mean * corp->gem_scale;
int i, l, k;
for (i = 0; i < corp->ndoc; i++)
{
doc* curr_doc = corp->doc[i];
curr_doc->score = 0;
double count_gt_k[depth];
for (l = 0; l < depth; l++)
{
count_gt_k[l] = 0;
double count = vget(curr_doc->tot_levels, l);
for (k = 0; k < l; k++)
count_gt_k[k] += count;
}
double sum_log_prob = 0;
double levels_sum = sum(curr_doc->tot_levels);
double last_log_prob = 0;
for (l = 0; l < depth-1; l++)
{
double a = vget(curr_doc->tot_levels, l) + prior_a;
double b = count_gt_k[l] + prior_b;
curr_doc->score +=
lgamma(a) + lgamma(b) - lgamma(a + b) -
lgamma(prior_b) - lgamma(prior_a) +
lgamma(prior_a + prior_b);
// compute the probability of this level for computing the
// probability of the bottom level later.
levels_sum -= vget(curr_doc->tot_levels, l);
double expected_stick_len =
(prior_a + vget(curr_doc->tot_levels, l)) /
(corp->gem_scale + vget(curr_doc->tot_levels, l) + levels_sum);
double log_p = log(expected_stick_len) + sum_log_prob;
if (l==0)
last_log_prob = log_p;
else
last_log_prob += log_sum(log_p, last_log_prob);
sum_log_prob += log(1 - expected_stick_len);
}
last_log_prob = log(1 - exp(last_log_prob));
// now handle the bottom levels, which are conditionally
// independent given everything else. (more z's allocated to
// the last level doesn't make other's any more likely because the
// probability of reaching the last level has only to do with the
// previous stick lenths.)
curr_doc->score += vget(curr_doc->tot_levels, depth-1) * last_log_prob;
score += curr_doc->score;
}
// exponential 1 prior: log(1) - 1 * s
score += -corp->gem_scale;
return(score);
}
void corpus_mh_update_gem(corpus* corp)
{
double current_score = gem_score(corp);
int accept = 0;
int iter;
for (iter = 0; iter < MH_REPS; iter++)
{
double old_mean = corp->gem_mean;
double old_scale = corp->gem_scale;
double old_alpha = corp->gem_mean * corp->gem_scale;
double new_alpha = rgauss(old_alpha, MH_GEM_STDEV);
double new_mean = new_alpha / (1.0 + new_alpha);
double new_scale = 1.0 + new_alpha;
if (new_alpha < 0) continue;
corp->gem_mean = new_mean;
corp->gem_scale = new_scale;
double new_score = gem_score(corp);
double r = runif();
if (r > exp(new_score - current_score))
{
corp->gem_mean = old_mean;
corp->gem_scale = old_scale;
}
else
{
current_score = new_score;
accept++;
}
}
outlog("sampled gem: accepted %d; mean = %5.3f scale = %5.3f",
accept, corp->gem_mean, corp->gem_scale);
}
void corpus_mh_update_gem_mean(corpus* corp)
{
outlog("updating gem");
double current_score = gem_score(corp);
int accept = 0;
int iter;
for (iter = 0; iter < MH_REPS; iter++)
{
double old_mean = corp->gem_mean;
double new_mean = rgauss(old_mean, MH_GEM_MEAN_STDEV);
if ((new_mean > 0) && (new_mean < 1))
{
corp->gem_mean = new_mean;
double new_score = gem_score(corp);
double r = runif();
if (r > exp(new_score - current_score))
{
corp->gem_mean = old_mean;
}
else
{
current_score = new_score;
accept++;
}
}
}
outlog("sampled gem mean [accepted %d; mean = %5.3f]",
accept, corp->gem_mean);
}
void corpus_mh_update_gem_scale(corpus* corp)
{
// outlog("updating gem");
double current_score = gem_score(corp);
int accept = 0;
int iter;
for (iter = 0; iter < MH_REPS; iter++)
{
double old_scale = corp->gem_scale;
double new_scale = rgauss(old_scale, MH_GEM_STDEV);
if (new_scale > 0)
{
corp->gem_scale = new_scale;
double new_score = gem_score(corp);
double r = runif();
if (r > exp(new_score - current_score))
{
corp->gem_scale = old_scale;
}
else
{
current_score = new_score;
accept++;
}
}
}
outlog("sampled gem scale [ accepted %d; scale = %5.3f]",
accept, corp->gem_scale);
}