forked from RolnickLab/constrained-downscaling
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
47 lines (44 loc) · 1.83 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
from training import run_training
from utils import load_data
import numpy as np
import argparse
import os
import torch
def add_arguments():
parser = argparse.ArgumentParser()
parser.add_argument("--dataset", default="era5_twc", help="choose a data set to use")
parser.add_argument("--model", default="cnn")
parser.add_argument("--model_id", default="test")
parser.add_argument("--upsampling_factor", default=4, type=int)
parser.add_argument("--constraints", default="none")
parser.add_argument("--number_channels", default=32, type=int)
parser.add_argument("--number_residual_blocks", default=4, type=int)
parser.add_argument("--lr", default=0.001, help="learning rate", type=float)
parser.add_argument("--loss", default="mse")
parser.add_argument("--optimizer", default="adam")
parser.add_argument("--weight_decay", default=1e-9, type=float)
parser.add_argument("--batch_size", default=64, type=int)
parser.add_argument("--epochs", default=200, type=int)
parser.add_argument("--alpha", default=0.99, type=float)
parser.add_argument("--test_val_train", default="val")
parser.add_argument("--training_evalonly", default="training")
parser.add_argument("--dim_channels", default=1, type=int)
parser.add_argument("--adv_factor", default=0.0001, type=float)
return parser.parse_args()
def main(args):
#load data
if not os.path.exists('./models'):
os.makedirs('./models')
if not os.path.exists('./data/prediction'):
os.makedirs('./data/prediction')
if args.training_evalonly == 'training':
data = load_data(args)
#run training
run_training(args, data)
else:
data = load_data(args)
#run training
evaluate_model(data, args)
if __name__ == '__main__':
args = add_arguments()
main(args)