-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathgqca2.py
executable file
·118 lines (101 loc) · 2.95 KB
/
gqca2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
"""
This program uses generalised quasichemical approximation (GQCA)
to calculate some thermodynamics properties of a pseudobinary
alloy A_{1-x}B_{x}C
Clovis Caetano - July/2015
"""
import numpy as np
from scipy.optimize import brentq
# Boltzmann constant in eV per K (CODATA 2006)
kB = 8.617343e-5
# Variables
# x -> composition of the alloy
# T -> temperature
# Reading input data from file energies.dat
# j -> index of configurations
# nj -> number of atoms B in configuration j
# gj -> degeneracy of configuration j
# ej -> energy of configuration j in eV per formula unit
nj = []
gj = []
ej = []
with open("energies.dat","r") as input:
for line in input:
if line.startswith('#'):
continue
data = line.split()
nj.append(int(data[1]))
gj.append(int(data[2]))
ej.append(float(data[4])/3) # Dividing by 3 in order to obtain energy/anion
# J -> total number of configurations
# N -> number of atoms in the sublattice
J = len(nj)
N = nj[J-1]
# Calculating the excess energies dej
dej = []
for j in range(J):
x = float(nj[j])/float(N)
dej.append(ej[j]-(1-x)*ej[0]-x*ej[J-1])
# This quantity is used in the definition of the poliynomium
def alpha(j,x,T):
return (N*x-nj[j])*gj[j]*np.exp(-dej[j]/(kB*T))
# Poliynomium related to a constraint of GQCA probability
def polynom(eta,x,T):
total = 0
for j in range(J):
total += alpha(j,x,T)*eta**nj[j]
return total
# Brent method is used to find the root of the polynomial equation
def root(x,T):
eta_0 = 0.0
eta_1 = 1e0
while polynom(eta_1,x,T) >= 0:
eta_1 = 10*eta_1
return brentq(polynom,eta_0,eta_1,args=(x,T),maxiter=1000)
# GQCA probability of finding the configuration j in the alloy
def xj(j,T,r0):
total = 0
for i in range(J):
total += gj[i]*r0**nj[i]*np.exp(-dej[i]/(kB*T))
return gj[j]*r0**nj[j]*np.exp(-dej[j]/(kB*T))/total
# Probability in a random alloy (a priori)
def xj0(j,x):
return gj[j]*x**nj[j]*(1-x)**(N-nj[j])
# Enthalpy of mixing
def enthalpy(x,T):
if x == 0 or x == 1:
return 0
else:
r0 = root(x,T)
total = 0
for j in range(J):
total += xj(j,T,r0)*ej[j]
return total-(1-x)*ej[0]-x*ej[J-1]
# Enthalpy of mixing (random alloy)
def enthalpy0(x):
if x == 0 or x == 1:
return 0
else:
total = 0
for j in range(J):
total += xj0(j,x)*ej[j]
return total-(1-x)*ej[0]-x*ej[J-1]
# Entropy of mixing
def entropy(x,T):
if x == 0 or x == 1:
return 0
else:
r0 = root(x,T)
total = 0
for j in range(J):
total += xj(j,T,r0)*np.log(xj(j,T,r0)/xj0(j,x))
return -kB*(x*np.log(x)+(1-x)*np.log(1-x)+total/N)
# Entropy of mixing (ideal solution)
def entropy0(x):
if x == 0 or x == 1:
return 0
else:
return -kB*(x*np.log(x)+(1-x)*np.log(1-x))
# Free energy of mixing (Helmholtz)
def free(x,T):
return enthalpy(x,T)-T*entropy(x,T)