-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAiVirtualMouseProject.py
167 lines (144 loc) · 6.91 KB
/
AiVirtualMouseProject.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import sys
import cv2
from pynput.keyboard import Key, Listener
import numpy as np
from pynput.keyboard import Key
import HandTrackingModule as htm
import time
import autopy
import keyboard
import pyautogui as py
def show(key):
if key == Key.esc:
return True
else :
return False
def Gesture_Controller():
gc_mode = 0
flag = False
##########################
wCam, hCam = 640, 480
frameR = 100 # Frame Reduction
smoothening = 7
#########################
pTime = 0
plocX, plocY = 0, 0
clocX, clocY = 0, 0
# cv2.VideoCapture(video_path or device index )
# device index: It is just the number to specify the camera. Its possible values ie either 0 or -1.
cap = cv2.VideoCapture(0)
cap.set(3, wCam) #set width of cam
cap.set(4, hCam) #set height of cam
detector = htm.handDetector(maxHands=1)
wScr, hScr = autopy.screen.size() #screen size of device in which program is open
# print(wScr, hScr)
while True:
# 1. Find hand Landmarks
success, img = cap.read() #cap.read() returns a bool (True/False) saved in success. If the frame is read correctly,
# it will be true and store in img
img = detector.findHands(img)
lmList, bbox = detector.findPosition(img)
# 2. Get the tip of the index and middle fingers
if len(lmList) != 0:
x1, y1 = lmList[8][1:]
x2, y2 = lmList[12][1:]
# print(x1, y1, x2, y2)
# 3. Check which fingers are up
fingers = detector.fingersUp()
# Scroll up
if len(fingers) > 4 and fingers[0] == 0 and fingers[1]==1 and fingers[2] == 1 and fingers[3] == 1 and fingers[4] == 1:
length, img, lineInfo = detector.findDistance(4, 8, img)
# print("IN FUN2")
cv2.circle(img, (lineInfo[4], lineInfo[5]),15, (0, 255, 0), cv2.FILLED)
py.scroll(50)
# drag drop item drop
if len(fingers) > 4 and fingers[0]==1 and fingers[1] == 1 and fingers[2] == 1 and fingers[3] == 1 and fingers[4] == 1:
print("CALL")
flag = False
py.mouseUp(button='left')
if (len(fingers)>3 and fingers[3] == 0) or (len(fingers)>4 and fingers[4] == 0):
# 4. Only Index Finger : Moving Mode
if len(fingers)>4 and fingers[1] == 1 and fingers[2] == 1 and fingers[3]==0 and fingers[4]==0:
# if len(fingers)>2 and fingers[1] == 1 and fingers[2] == 1:
length, img, lineInfo = detector.findDistance(8, 12, img)
# 5. Convert Coordinates
x3 = np.interp(x1, (frameR, wCam - frameR), (0, wScr))
y3 = np.interp(y1, (frameR, hCam - frameR), (0, hScr))
# 6. Smoothen Values
clocX = plocX + (x3 - plocX) / smoothening
clocY = plocY + (y3 - plocY) / smoothening
# 7. Move Mouse
if length > 40:
autopy.mouse.move(wScr - clocX, clocY)
cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)
plocX, plocY = clocX, clocY
# 8. Both Index and middle fingers are up : Clicking Mode Right CLick
# if len(fingers) > 2 and fingers[1] == 0 and fingers[2] == 1:
if len(fingers) > 4 and fingers[0] == 0 and fingers[1] == 0 and fingers[2] == 1 and fingers[3] == 0 and fingers[4] == 0:
# 9. Find distance between fingers
length, img, lineInfo = detector.findDistance(8, 12, img)
# print(length)
# 10. Click mouse if distance short
if length > 30:
cv2.circle(img, (lineInfo[4], lineInfo[5]),15, (0, 255, 0), cv2.FILLED)
py.click(button = 'left')
# 8. Both Index and middle fingers are up : Clicking Mode Left CLick
# if len(fingers) > 2 and fingers[1] == 1 and fingers[2] == 0:
if len(fingers) > 4 and fingers[0] == 0 and fingers[1] == 1 and fingers[2] == 0 and fingers[3] == 0 and fingers[4] == 0:
# 9. Find distance between fingers
length, img, lineInfo = detector.findDistance(8, 12, img)
# print(length)
# 10. Click mouse if distance short
if length > 30:
cv2.circle(img, (lineInfo[4], lineInfo[5]),15, (0, 255, 0), cv2.FILLED)
py.click(button = 'right')
# Double Click
if len(fingers) > 4 and fingers[1] == 1 and fingers[2] == 1 and fingers[0]==0 and fingers[3]==0 and fingers[4]==0:
# 9. Find distance between fingers
length, img, lineInfo = detector.findDistance(8, 12, img)
# print(length)
# 10. Click mouse if distance short
if length < 30:
cv2.circle(img, (lineInfo[4], lineInfo[5]),15, (0, 255, 0), cv2.FILLED)
py.doubleClick()
# Scroll Down
if len(fingers) > 4 and fingers[0] == 0 and fingers[1]==1 and fingers[2] == 1 and fingers[3] == 1 and fingers[4] == 0:
length, img, lineInfo = detector.findDistance(4, 8, img)
# print("IN FUN")
cv2.circle(img, (lineInfo[4], lineInfo[5]),15, (0, 255, 0), cv2.FILLED)
py.scroll(-50)
# Drag and Drop
if len(fingers) > 4 and fingers[0] == 0 and fingers[1] == 0 and fingers[2] == 0 and fingers[3] == 0 and fingers[4] == 0:
length, img, lineInfo = detector.findDistance(8, 12, img)
# 5. Convert Coordinates
x3 = np.interp(x1, (frameR, wCam - frameR), (0, wScr))
y3 = np.interp(y1, (frameR, hCam - frameR), (0, hScr))
# 6. Smoothen Values
clocX = plocX + (x3 - plocX) / smoothening
clocY = plocY + (y3 - plocY) / smoothening
# 7. Move Mouse
# py.mouseDown(button='left')
if not flag:
print("CALL IN")
flag = True
py.mouseDown(button='left')
print("TEMP")
autopy.mouse.move(wScr - clocX, clocY)
cv2.circle(img, (x1, y1), 15, (255, 0, 255), cv2.FILLED)
cv2.circle(img, (x2, y2), 15, (255, 0, 255), cv2.FILLED)
plocX, plocY = clocX, clocY
# 11. Frame Rate
cTime = time.time()
fps = 1 / (cTime - pTime)
pTime = cTime
img = cv2.flip(img,1)
cv2.putText(img, str(int(fps)), (20, 50), cv2.FONT_HERSHEY_PLAIN, 3,
(255, 0, 0), 3)
# 12. Display
cv2.imshow("Image", img)
cv2.waitKey(1)
if keyboard.is_pressed('esc'):
cv2.destroyAllWindows()
cap.release()
break