-
Notifications
You must be signed in to change notification settings - Fork 0
/
stats.py
224 lines (181 loc) · 8.58 KB
/
stats.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import seaborn as sns
import numpy as np
from misc import set_size
from scipy import stats
from scipy.interpolate import interp1d
from pandas.plotting import table
import statsmodels.api as sm
df_knolls_grund = pd.read_csv("data-set\knolls_grund.csv", sep=";", parse_dates=["Datum Tid (UTC)"], index_col="Datum Tid (UTC)", usecols = ['Datum Tid (UTC)','Havstemperatur'])
df_huvudskar = pd.read_csv("data-set\huvudskar.csv", sep=";", parse_dates=["Datum Tid (UTC)"], index_col="Datum Tid (UTC)")
df_huvudskar = df_huvudskar.loc[df_huvudskar["Matdjup"]==1]
df_huvudskar = df_huvudskar.drop(columns=["Kvalitet", "Matdjup"])
df_finngrundet = pd.read_csv("data-set/finngrundet.csv", sep=";", parse_dates=["Datum Tid (UTC)"], index_col="Datum Tid (UTC)", usecols = ['Datum Tid (UTC)','Havstemperatur'])
start, end = '2020-09-28', '2020-11-29'
df_finngrundet = df_finngrundet.loc[start:end]
df_huvudskar = df_huvudskar.loc[start:end]
df_knolls_grund = df_knolls_grund.loc[start:end]
smhi_mean = pd.concat([df_knolls_grund, df_huvudskar, df_finngrundet]).groupby(level=0).mean()
smhi_mean = smhi_mean["Havstemperatur"].rolling(3, center=True).mean()
df1 = pd.read_csv("data-set/sst.csv", sep=",", parse_dates=["Datum Tid (UTC)"], index_col="Datum Tid (UTC)")
df1.sort_values(by=['Datum Tid (UTC)'], inplace=True)
df1 = df1.loc[start:end]
df1['month'] = [d.strftime('%b') for d in df1.index]
df1['week'] = [d.strftime('%U') for d in df1.index]
#print(smhi_mean)
#temp_bias = 3.35
#df1["Havstemperatur"] = df1["Havstemperatur"] + temp_bias
def bias(df):
df_1d = df["Havstemperatur"].resample('D').mean()
smhi_1d = smhi_mean["Havstemperatur"].resample('D').mean()
concatTemp = pd.concat([df_1d, smhi_1d]).groupby(level=0)
print(concatTemp.head(20))
print(concatTemp)
def data_comp(df):
pd.set_option("display.max_rows", None, "display.max_columns", None)
df_1d = df["Havstemperatur"].resample('D').mean()
smhi_1d = smhi_mean.resample('D').mean()
df_1d, smhi_1d = df_1d.align(smhi_1d)
print(df_1d)
#df_1d = df_1d.interpolate(method='time')
#diff = smhi_1d - df_1d
#slope = pd.Series(np.gradient(df_1d.values), df_1d.index, name='slope')
#print(slope.mean())
def smhi():
df_finngrundet.reset_index(inplace=True)
df_huvudskar.reset_index(inplace=True)
df_knolls_grund.reset_index(inplace=True)
#smhi_7d.reset_index(inplace=True)
fig, ax = plt.subplots()
ax.plot(df_finngrundet["Datum Tid (UTC)"], df_finngrundet["Havstemperatur"],linestyle='--', label='Finngrundet')
ax.plot(df_huvudskar["Datum Tid (UTC)"], df_huvudskar["Havstemperatur"],linestyle='--', label='Huvudskär')
ax.plot(df_knolls_grund["Datum Tid (UTC)"], df_knolls_grund["Havstemperatur"],linestyle='--', label='Knolls grund')
ax.plot(smhi_mean.loc[start:end], label='Medelvärde (Referensdata)')
ax.legend()
ax.set_ylabel('Temperatur [°C]', fontweight='demi')
ax.yaxis.set_label_position("right")
ax.set_xlabel("Vecka", fontweight='demi')
ax.set_title("Temperaturutveckling på 0,5 m - SMHIs bojar", fontweight='demi')
ax.xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=0))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%U'))
ax.set_ylim(ymin=4)
def seasonality(df):
end = "2020-11-28"
df = df.loc[:end]
sns.boxplot(data=df, x='week', y="Havstemperatur").set(ylabel= 'Temperatur [°C]', xlabel="Vecka")
plt.ylim(4)
def histogram(df):
df["Havstemperatur"].hist(bins=11, range=(0,11))
plt.xlabel("Temperatur [°C]")
def observations(df):
obs = df.groupby(df.index.date).count()
#print(obs["Havstemperatur"].std())
obs["Havstemperatur"].hist(bins=24, range=(0,12))
#df.groupby([df.index.date,]).count().plot(kind='bar')
plt.ylabel("Frekvens")
plt.xlabel("Observation/dag")
def average(df):
df_weekly_mean = df["Havstemperatur"].resample('W', label='left', loffset=pd.DateOffset(days=4.5)).mean()
smhi_weekly_mean = smhi_mean.resample('W', label='left', loffset=pd.DateOffset(days=4.5)).mean()
df_1d = df["Havstemperatur"].resample('D').mean()
df_5d = df["Havstemperatur"].rolling("5d").mean()
df_std = smhi_mean.resample("D").std().mean()
print(df_weekly_mean)
# Plot daily and weekly resampled time series together
fig, ax = plt.subplots()
ax.plot(df.loc[start:end, 'Havstemperatur'], marker='.', linestyle='None', alpha=0.5, label='Observation: $SST_{skin}$')
ax.plot(df_5d.loc[start:end], marker='.', linestyle='-', label='5-d rullande medelvärde')
#ax.plot(intdf.loc[start:end], marker='.', linestyle='-', label='Dagligt medelvärde')
ax.plot(df_weekly_mean.loc[start:end], marker='D', linestyle='--', markersize=7, label='Veckovis medelvärde')
ax.plot(smhi_mean.loc[start:end], label="Referensdata: 0,5 m (SMHI)")
#ax.fill_between(df_std.index, df_7d - 2 * df_std, df_7d + 2 * df_std, color='b', alpha=0.2)
ax.set_ylabel('Temperatur [°C]', fontweight='demi')
ax.yaxis.set_label_position("right")
ax.set_xlabel("Vecka", fontweight='demi')
ax.xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=0))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%U'))
ax.set_title('Havstemperaturutveckling i Östersjöområdet', fontweight='demi')
ax.set_ylim(ymin=4)
ax.legend()
def pixel_average(df):
px_std = df.std(axis=0)["Pixlar"]
px_mean = df.mean(axis=0)["Pixlar"]
df_px_std = df[df["Pixlar"] < (px_mean-px_std)]
df.reset_index(inplace=True)
df_px_std.reset_index(inplace=True)
# Plot daily and weekly resampled time series together
#fig, ax = plt.subplots()
df.plot.scatter("Datum Tid (UTC)", "Havstemperatur", c="Pixlar", colormap="inferno", label='Observation')
ax = df.plot.scatter("Datum Tid (UTC)", "Havstemperatur", color='Red', label='Observation')
df_px_std.plot.scatter("Datum Tid (UTC)", "Havstemperatur", label='Observation', ax=ax)
def satellites(df):
N15 = df.loc[df['Satellit'] == "NOAA 15"]
N18 = df.loc[df['Satellit'] == "NOAA 18"]
N19 = df.loc[df['Satellit'] == "NOAA 19"]
print(N15["Havstemperatur"].mean())
print(N18["Havstemperatur"].mean())
print(N19["Havstemperatur"].mean())
fig, ax = plt.subplots()
ax.plot(N15.loc[start:end, "Havstemperatur"].rolling("5d").mean(), marker=".", label=("NOAA 15"), linestyle="-")
ax.plot(N18.loc[start:end, "Havstemperatur"].rolling("5d").mean(), marker=".", label=("NOAA 18"), linestyle="-")
ax.plot(N19.loc[start:end, "Havstemperatur"].rolling("5d").mean(), marker=".", label=("NOAA 19"), linestyle="-")
#ax.plot(df.loc[start:end, "Havstemperatur"].rolling("5d").mean(), label=("Kombinerade observationer"), linestyle="-")
ax.set_ylabel('Temperatur [°C]')
ax.set_xlabel("Vecka")
ax.xaxis.set_major_locator(mdates.WeekdayLocator(byweekday=0))
ax.xaxis.set_major_formatter(mdates.DateFormatter('%U'))
ax.set_ylim(ymin=4)
ax.legend()
def dist(df):
#sns.displot(df, x="Pixlar", binwidth=1000, kde=True) #, kind="kde"
#sns.distplot(df["Pixlar"], rug=True, kde=True)
#sns.displot(df, x="Pixlar", y="Havstemperatur")
# Note the difference in argument order
model = sm.OLS(df["Pixlar"], df["Elevation"]).fit()
predictions = model.predict(df["Pixlar"]) # make the predictions by the model
# Print out the statistics
print(model.summary())
""" ax=sns.jointplot(x="Elevation", y='Pixlar', data=df, kind="reg")
ax.ax_joint.set_ylabel("Pixlar")
ax.ax_joint.set_xlabel("Elevation [°]")
ax.ax_marg_x.set_xlim(0, 90) """
tex_fonts = {
# Use LaTeX to write all text
#"text.usetex": False,
"font.family": "sans-serif",
"font.sans-serif": "Avenir Next LT Pro",
"font.weight": "demi",
# Use 10pt font in plots, to match 10pt font in document
"axes.labelsize": 12,
"font.size": 12,
# Make the legend/label fonts a little smaller
"legend.fontsize": 10,
"xtick.labelsize": 10,
"ytick.labelsize": 10
}
sns.set(rc={'figure.figsize':(set_size(600))})
sns.set_theme(style="whitegrid")
#plt.rcParams.update(tex_fonts)
plt.rcParams['font.family'] = 'sans-serif'
plt.rcParams['font.sans-serif'] = 'Avenir Next LT Pro'
#plt.rcParams['font.weight'] = 'demi'
#plt.rcParams["figure.figsize"] = set_size(390)
#seasonality(df1)
#histogram(df1)
average(df1)
#satellites(df1)
#regression(df1)
#dist(df1)
#pixel_average(df1)
#smhi()
#observations(df1)
#calendar(df1)
#bias(df1)
#data_comp(df1)
#plt.tight_layout(pad=0.0,h_pad=0.0,w_pad=0.0)
plt.tight_layout()
#plt.show()
#plt.savefig("exported/bias.svg", format="svg")
plt.savefig("exported/6.png", dpi=300)