-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathCrownReach.cpp
248 lines (222 loc) · 9.05 KB
/
CrownReach.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include "CrownReach.h"
#include <fstream>
vector<Result_of_Reachability> CrownReach(vector<Flowpipe>& initial_sets,
ODE<Real>& dynamics,
Computational_Setting& setting,
Variables& vars,
vector<unsigned int>& sys_settings,
unsigned int steps,
double step_size,
int* u_ids,
vector<vector<Interval>>* initial_boxes,
vector<string>* constraints_safe,
vector<string>* constraints_unsafe,
vector<string>* constraints_target,
bool test_mode){
// read nn_settings
unsigned int numVars = sys_settings[0];
unsigned int num_nn_input = sys_settings[1];
unsigned int num_nn_output = sys_settings[2];
// RPC client
HttpClient httpclient("http://127.0.0.1:5000");
Client cl(httpclient, JSONRPC_CLIENT_V2);
vector<Constraint> safeSet;
if (constraints_safe!=nullptr){
for (int i = 0; i < constraints_safe->size(); i++)
{
Constraint c_temp((*constraints_safe)[i], vars);
safeSet.push_back(c_temp);
}
}
vector<Symbolic_Remainder> symbolic_remainders;
vector<Result_of_Reachability> results;
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
Flowpipe initial_set = initial_sets[sub_iter];
Symbolic_Remainder symbolic_remainder_temp(initial_set, 1000);
symbolic_remainders.push_back(symbolic_remainder_temp);
Result_of_Reachability result_temp;
results.push_back(result_temp);
}
auto start = std::chrono::steady_clock::now();
unsigned int num_threads = boost::thread::hardware_concurrency();
// test mode setting
unsigned int max_steps = test_mode ? std::min(steps, 5U) : steps;
std::ofstream resultsFile;
if (test_mode) {
std::string resultsFileName = "../tests/test_epoch_results.txt";
resultsFile.open(resultsFileName, std::ios_base::out);
}
for (int iter = 0; iter < max_steps; iter++)
{
boost::asio::thread_pool pool(num_threads);
cout << "Step " << iter << endl;
Json::Value input_lb(Json::arrayValue);
Json::Value input_ub(Json::arrayValue);
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
for (int i = 0; i < num_nn_input; i++)
{
Interval input_range_temp;
initial_sets[sub_iter].tmvPre.tms[i].intEval(input_range_temp, initial_sets[sub_iter].domain);
input_lb.append(input_range_temp.inf());
input_ub.append(input_range_temp.sup());
}
}
// Call CROWN
Json::Value params, output_coefficients;
params["input_lb"] = input_lb;
params["input_ub"] = input_ub;
cl.CallMethod("CROWN_reach", params, output_coefficients);
// cout << "Received output coefficients: " << params["input_lb"][0] <<params["input_ub"][0] << endl;
// cout << "Received output coefficients: " << output_coefficients.toStyledString() << endl;
if (test_mode) {
resultsFile << "Epoch " << iter << " - Received output lower/upper bounds: " << params.toStyledString() << std::endl;
resultsFile << "Epoch " << iter << " - Received output coefficients: " << output_coefficients.toStyledString() << std::endl;
}
// Unpack results from CROWN
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
Matrix<Real> T(num_nn_output, num_nn_input, Real(0));
vector<Real> c_vector;
vector<double> interval_r;
for (int j = 0; j < num_nn_output; j++)
{
for (int i = 0; i < num_nn_input; i++)
{
T[j][i] = output_coefficients["T"][sub_iter][j][i].asFloat();
}
double u_max = output_coefficients["u_max"][sub_iter][j].asFloat();
double u_min = output_coefficients["u_min"][sub_iter][j].asFloat();
c_vector.push_back((u_max + u_min) / 2);
interval_r.push_back((u_max - u_min) / 2);
}
// Construct new Taylor Models
TaylorModelVec<Real> tmv_output(c_vector, numVars + 1);
for (int j = 0; j < num_nn_output; j++)
{
for (int i = 0; i < num_nn_input; i++)
{
tmv_output.tms[j] += initial_sets[sub_iter].tmvPre.tms[i] * T[j][i];
}
Interval remainder_temp(-interval_r[j], interval_r[j]);
tmv_output.tms[j].remainder += remainder_temp;
}
for (int j = 0; j < num_nn_output; j++)
{
initial_sets[sub_iter].tmvPre.tms[u_ids[j]] = tmv_output.tms[j];
}
}
// Flow*
std::atomic<bool> terminate(false);
int in_safeset = 0;
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
boost::asio::post(pool, [&, sub_iter] {
// excute task
dynamics.reach(results[sub_iter], initial_sets[sub_iter], step_size, setting, safeSet, symbolic_remainders[sub_iter]);
// if in safeset
if (constraints_safe != nullptr){
if (results[sub_iter].status == COMPLETED_UNSAFE)
{
cout << "Unsafe." << endl;
in_safeset = 1;
}
else if (results[sub_iter].status == COMPLETED_UNKNOWN)
{
cout << "Unknown." << endl;
in_safeset = 2;
}
}
if (results[sub_iter].status == COMPLETED_SAFE || results[sub_iter].status == COMPLETED_UNSAFE || results[sub_iter].status == COMPLETED_UNKNOWN)
{
initial_sets[sub_iter] = results[sub_iter].fp_end_of_time;
}
else
{
cout << "Flow* terminated." << endl;
cout << "Broken branch: " << sub_iter << endl;
if (initial_boxes != nullptr){
cout << (*initial_boxes)[sub_iter][0] << "\t" << (*initial_boxes)[sub_iter][1] << endl;
}
terminate.store(true);
}
});
}
pool.join();
if (terminate.load() || in_safeset!=0)
{
break;
}
}
// Check obstacle
int safe = 0;
if (constraints_unsafe != nullptr){
safe = 0;
vector<Constraint> unsafeSet;
for (int i = 0; i < constraints_unsafe->size(); i++)
{
Constraint c_temp((*constraints_unsafe)[i], vars);
unsafeSet.push_back(c_temp);
}
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
results[sub_iter].unsafetyChecking(unsafeSet, setting.tm_setting, setting.g_setting);
if (results[sub_iter].isSafe() && constraints_target == nullptr)
{
safe = 2; // Safe
cout << "Verified" << endl;
break;
}
else if (results[sub_iter].isUnsafe())
{
safe = 1; // Unsafe
cout << "Unsafe" << endl;
break;
}
else if (!results[sub_iter].isSafe())
{
safe = 2; // Unknown
cout << "Unknown" << endl;
break;
}
}
}
// Check target
if (constraints_target != nullptr){
vector<Constraint> targetSet;
for (int i = 0; i < constraints_target->size(); i++)
{
Constraint c_temp((*constraints_target)[i], vars);
targetSet.push_back(c_temp);
}
bool in_target = 1;
for (int sub_iter = 0; sub_iter < initial_sets.size(); sub_iter++)
{
if (!results[sub_iter].fp_end_of_time.isInTarget(targetSet, setting))
{
in_target = 0;
break;
}
}
if (safe == 0 && in_target)
{
cout << "VERIFIED" << endl;
}
else if (safe == 1)
{
cout << "FALSIFIED" << endl;
}
else
{
cout << "UNKNOWN" << endl;
}
}
auto end = std::chrono::steady_clock::now();
auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(end - start);
printf("time cost: %lf\n", (double)(duration.count() / 1000.0));
if (test_mode) {
resultsFile.close();
}
return results;
};