-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtest.py
127 lines (107 loc) · 5.32 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import argparse
import os
from tqdm import tqdm
import torch
import pytorch_lightning as pl
from vocab import Vocab
from utils import load_data, load_sent, load_model, makedir, write
from dataset import get_eval_dataloader
def main(args):
pl.seed_everything(args.seed)
model = load_model(args.checkpoint).to(device)
model.eval()
vocab = Vocab(os.path.join(model.hparams.root_dir, 'vocab.txt'))
if args.eval:
data = load_data(args.eval, model.hparams.add_eos, model.hparams.cat_sent, model.hparams.max_len)
dl = get_eval_dataloader(
data, vocab, args.max_tok,
data_workers=args.data_workers,
model_type=model.hparams.model_type)
trainer = pl.Trainer(
gpus=args.gpus,
amp_level=args.fp16_opt_level,
precision=16 if args.fp16 else 32,
default_root_dir='testing_logs')
model.hparams.n_mc = args.n_mc
trainer.test(model, test_dataloaders=dl)
if args.output:
output = os.path.join(os.path.dirname(os.path.dirname(args.checkpoint)), 'outputs/', args.output)
makedir(output)
if args.sample:
with open(output, 'w') as f:
for i in tqdm(range(args.sample)):
if model.hparams.model_type == 'inst':
_, full = model.generate([], [0], args.decode, device)
else:
_, full = model.generate([model.init_canvas()], args.decode, device)
full = [[vocab.idx2word[id] for id in ids] for ids in full]
write(f, full, args.write_mid)
if args.fill:
sents = load_sent(args.fill, model.hparams.add_eos)
sents = [[vocab.word_to_idx(w) for w in s] for s in sents]
with open(output + '.fill', 'w') as f_fill:
with open(output + '.full', 'w') as f_full:
for s in tqdm(sents):
if model.hparams.model_type == 'inst':
seq, blanks = [], []
for w in s:
if w == vocab.blank:
blanks.append(len(seq))
else:
seq.append(w)
if args.anywhere:
blanks = list(range(len(seq) + 1))
fill, full = model.generate(seq, blanks, args.decode, device,
args.force_insert, args.prioritize_unfilled)
else:
fill, full = model.generate(s, args.decode, device)
fill = [[vocab.idx2word[id] for id in ids] for ids in fill]
full = [[vocab.idx2word[id] for id in ids] for ids in full]
write(f_fill, fill, args.write_mid)
write(f_full, full, args.write_mid)
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--checkpoint', required=True,
help='path to checkpoint')
parser.add_argument('--eval', default='',
help='data file to evaluate')
parser.add_argument('--n_mc', type=int, default=10,
help='num of samples for monte carlo estimate of ppl')
parser.add_argument('--max_tok', type=int, default=40000,
help='max number of tokens per batch')
parser.add_argument('--output', default='',
help='output file')
parser.add_argument('--sample', type=int, default=0,
help='num of sentences to generate')
parser.add_argument('--fill', default='',
help='input file to fill')
parser.add_argument('--decode', default='greedy',
choices=['greedy', 'sample'],
help='greedy decoding or sampling')
parser.add_argument('--write_mid', action='store_true',
help='write intermediate partial sentences')
# Specific to InsT
parser.add_argument('--anywhere', action='store_true',
help='fill in anywhere, not only blanks')
parser.add_argument('--force_insert', action='store_true',
help='disable termination unless all slots are filled')
parser.add_argument('--prioritize_unfilled', action='store_true',
help='prioritize unfilled slots if any')
parser.add_argument('--seed', type=int, default=1111,
help='random seed')
parser.add_argument('--data_workers', type=int, default=8,
help='data workers')
parser.add_argument('--no_cuda', action='store_true',
help='disable CUDA')
parser.add_argument('--fp16', action='store_true',
help='whether to use 16-bit (mixed) precision '
'(through NVIDIA apex) instead of 32-bit')
parser.add_argument('--fp16_opt_level', default='O1',
help="for fp16: Apex AMP optimization level selected "
"in ['O0', 'O1', 'O2', and 'O3']. see details at "
"https://nvidia.github.io/apex/amp.html")
args = parser.parse_args()
cuda = not args.no_cuda and torch.cuda.is_available()
device = torch.device('cuda' if cuda else 'cpu')
args.gpus = 1 if cuda else 0
main(args)