-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdenseSIFTNV.asv
390 lines (299 loc) · 13.9 KB
/
denseSIFTNV.asv
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
function features = denseSIFTNV(inputds,Options)
arguments (Input)
inputds {mustBeUnderlyingType(inputds, ...
['matlab.io.datastore.' ...
'ImageDatastore'])}
Options.Angles (1,1) double {mustBeInRange(Options. ...
Angles,1,36),...
mustBeInteger,...
mustBeNonnegative} = 8
Options.numBins (1,1) double {mustBeInRange(Options. ...
numBins,1,36),...
mustBeInteger,...
mustBeNonnegative} = 4
Options.Angle_Attenuation (1,1) double {mustBeInteger,...
mustBePositive} = 9
Options.Grid_Spacing (1,1) double {mustBeInteger,...
mustBePositive} = 4
Options.Patch_Size (1,1) double {mustBeInteger,...
mustBePositive} = 16
Options.Sigma_Edge (1,:) double {mustBePositive} = 1
end
fprintf("Using: \n Angles = %d \n Number of bins = %d \n Angle " + ...
"attenuation = %d \n Grid Spacing = %d \n Patch size = %d \n" + ...
" Sigma edge = %d\n\n",Options.Angles, ...
Options.numBins,Options.Angle_Attenuation,Options.Grid_Spacing, ...
Options.Patch_Size,Options.Sigma_Edge);
i=0;
for j = 1:length(inputds)
img = read(inputds);
[rows(j),cols(j)] = size(img);
end
min_row = min(rows,[],"all");
min_cols = min(cols,[],"all");
imgSizeThresh = [min_row,min_cols];
reset(inputds)
while hasdata(inputds)
i=i+1;
if mod(i,100)==0
fprintf("Iteration: %d\n\n",i);
end
img = read(inputds);
[hgt wid] = size(img);
if hgt > imgSizeThresh(1) || wid > imgSizeThresh(2)
%fprintf(['Image that is bigger than size threshold detected. ' ...
% 'Processing:...\n']);
img = imresize(img, imgSizeThresh, 'bicubic');
%fprintf('Process ended\n');
end
[hgt wid] = size(img);
%img = imresize(img,[200 400], 'bicubic');
%% Initialization of the dense SIFT process!
img = double(img);
img = mean(img,3);
img = img /max(img(:));
num_samples = Options.numBins * Options.numBins;
% Initializing the histogramic angles
angle_step = 2 * pi / Options.Angles;
angles = 0:angle_step:2*pi;
angles(Options.Angles+1) = []; % bin centers
% Generate dense Gauss (review it)
[GX,GY] = gaussNV(Options.Sigma_Edge);
% Add boundary
img = [img(2:-1:1,:,:); img; img(end:-1:end-1,:,:)];
img = [img(:,2:-1:1,:) img img(:,end:-1:end-1,:)];
% Subtracting the mean intensity value from the original image. This is
% a method of normalizing the image, meaning it enforces the mean
% intensity value of the image to be zero.
img = img-mean(img(:));
% Apply convolution between the x and y gradient components with the
% image, preserving the original image dimension
I_X = filter2(GX, img, 'same'); % vertical edges
I_Y = filter2(GY, img, 'same'); % horizontal edges
I_X = I_X(3:end-2,3:end-2,:);
I_Y = I_Y(3:end-2,3:end-2,:);
% Calculation of the image-gradient magnitude through the vertical and
% horizontal edges
I_mag = sqrt(I_X.^2 + I_Y.^2); % gradient magnitude
%% Calculation of the image-gradient through vertical and horizontal edges
I_theta = atan2(I_Y,I_X);
I_theta(find(isnan(I_theta))) = 0; % necessary????
%% Forming the grid of the overall image.
% grid
grid_x = Options.Patch_Size/2:Options.Grid_Spacing:wid-...
Options.Patch_Size/2+1;
grid_y = Options.Patch_Size/2:Options.Grid_Spacing:hgt-...
Options.Patch_Size/2+1;
%% Initialize the size of the orientation image
% make orientation images
I_orientation = zeros([hgt, wid, Options.Angles], 'single');
%% Calculation of the trigonometric numbers of the image-gradient
% for each histogram angle
cosI = cos(I_theta);
sinI = sin(I_theta);
%% Aligning the histogram angle with the angle of the image gradient and weighting with the image gradient magnitude
for a=1:Options.Angles
% compute each orientation channel
% Calculation of the inner product between the respective
%histogram angle (of the eight we are searching for) and the
% orientation of the gradient.
tmp = (cosI*cos(angles(a))+sinI*sin(angles(a))).^...
Options.Angle_Attenuation;
tmp = tmp .* (tmp > 0);
% weight by magnitude
I_orientation(:,:,a) = tmp .* I_mag;
% For visualization and better perception of things: figure
% imshow(I_orientation(:,:,a))
end
%% Apply spatial weighting to each orientation channel of the image.
% Convolution formulation:
% Initialize the weighting kernel with a size equal to the size of the
% patch (here 16-by-16)
weight_kernel = zeros(Options.Patch_Size,Options.Patch_Size);
% Calculation of the patch center.
r = Options.Patch_Size/2; % Here the radius of the patch is
% calculated, which is half the size of the patch.
cx = r - 0.5; % Here the x coordinate of the center of the
% patch is calculated. The -0.5 part is used as the offset of the
% center to align with the pixel grid. This is done because in many
% image processing applications, it is assumed that the pixel grid
% starts at the point (0.5,0.5).
% Calculation of the resolution of sampling
sample_res = Options.Patch_Size/Options.numBins;
% A weighting vector is generated that represents the distance of each
% pixel from the center of the patch, normalized by the sampling
% resolution.
weight_x = abs((1:Options.Patch_Size) - cx)/sample_res;
% Apply a linear ramp-type function to the weighting vector so that it
% decreases linearly from 1, from the center of the patch, to 0 at the
% edges of the patch. Pixels beyond the boundaries of the patch have
% zero weighting.
weight_x = (1 - weight_x) .* (weight_x <= 1);
for a = 1:Options.Angles
% I_orientation(:,:,a) = conv2(I_orientation(:,:,a), weight_kernel,
% 'same');
% Convolve first by column of each angle channel orientation, with
% weight_x and then convolve by row with weight_x' in order.
I_orientation(:,:,a) = conv2(weight_x, weight_x', ...
I_orientation(:,:,a),'same');
% figure imshow(I_orientation(:,:,a))
end
%% SIFT sampling on valid points (no objects in the boundary)
% Sample SIFT bins at valid locations (without boundary artifacts) find
% coordinates of sample points (bin centers)
% The meshgrid is a convenient and quick way to create a mesh for a
% grid. Practically what it does is reproduce the values we have in the
% 2 dimensions. Here, via linspace, the numbers are generated
%
% 1 5 9 13 17
%
% So here:
%
% sample_x = | 1 5 9 13 17 |
% | 1 5 9 13 17 |
% | 1 5 9 13 17 |
% | 1 5 9 13 17 |
% | 1 5 9 13 17 |
%
% Conversely for sample_y:
%
% sample_y = | 1 1 1 1 1 |
% | 5 5 5 5 5 |
% | 9 9 9 9 9 |
% | 13 13 13 13 13 |
% | 17 17 17 17 17 |
[sample_x, sample_y] = meshgrid(linspace(1,Options.Patch_Size+1,Options.numBins+1));
% ^^^^^^^^^^^^ ^^^^^^^^^^
% Γιατί patch_size+1 και num_bins+1; Γιατί με τον τρόπο αυτό
% εξασφαλίζουμε ότι το πλέγμα που δουλεύουμε θα έχει πάντοτε την σωστή
% μορφή, είτε αυτή είναι άρτια (π.χ 4-by-4) είτε περιττή (π.χ 5-by-5).
sample_x = sample_x(1:Options.numBins,1:Options.numBins);
sample_x = sample_x(:)-Options.Patch_Size/2; % We convert the
% sample_x matrix to a vector and then subtract by half
% Why patch_size/2?
%
% This is how we shift the coordinates in the sample_x variable with
% respect to the patch center.In the context of the code, the sample_x
% table contains the coordinates on the x-axis of the sample points,
% which are the centers of the SIFT bins. These coordinates are
% initially set at the top-left corner of the patch with values ranging
% in the range 1 to patch_size. So by subtracting patch_size/2 from
% each coordinate, the coordinates are redefined relative to the center
% of the patch. The center of the patch is now 0, while the range of
% coordinates is changed to [-patch_size/2,patch_size/2]
sample_y = sample_y(1:Options.numBins,1:Options.numBins);
sample_y = sample_y(:)-Options.Patch_Size/2;
%% Create a video showing dense image sampling
% figure; imshow(I); hold on;
%
% Creating the image grid [grid_x, grid_y] =
% meshgrid(1:Options.Grid_Spacing:size(I, 2), ...
% 1:Options.Grid_Spacing:size(I, 1));
%
% Creation of the sampling grid [sample_x, sample_y] =
% meshgrid(linspace(1, Options.Patch_Size, Options.numBins), ...
% linspace(1, Options.Patch_Size, Options.numBins));
%
% sample_x = sample_x(:) - Options.Patch_Size/2; sample_y = sample_y(:)
% - Options.Patch_Size/2;
%
% Create a new display showing the zoomed version of the sampling grid
%
% figure;
%
% Create a VideoWriter object v =
% VideoWriter('movingSamplingGrid.avi'); open(v);
%
% Plot the points of the sampling grid at each point of the image grid
%
%for i = 1:numel(grid_x)
% figure(1); clf; imshow(I); hold on; plot(grid_x, grid_y, 'r.'); %
% Visualization of the points of
% the image grid
%
% Visualisation of the sampling grid at the underlying grid point
% plot(grid_x(i) + sample_x, grid_y(i) + sample_y, 'b.');
%
% %% This part zooms in and shows how the sampling grid moves within
% the image grid
%
% figure(2); clf; imshow(I); hold on; plot(grid_x(i) + sample_x,
% grid_y(i) + sample_y, 'b.');
%
% Zoom in on the specific point of the image grid. axis([grid_x(i) -
% Options.Patch_Size, grid_x(i) + Options.Patch_Size, ...
% grid_y(i) - Options.Patch_Size, grid_y(i) + Options.Patch_Size]);
%
%
% frame = getframe(gcf); writeVideo(v, frame);
%
% pause(1); % We can choose to pause to better understand the
% visualisation.
%end
%
%hold off; close(v); % Close the video file
%% Computing and Storing the SIFT descriptors
% Why do we initialize the table of SIFT descriptors first with the
% dimensions of y and then with the dimensions of x?
%
% The order of dimensions is a convention that depends on how the data
% is accessed. Here, the data is created first on the y-axis and then
% on the x-axis so that when we want to access sift_arr(y,x,:) we are
% effectively accessing the SIFT descriptors at the (x,y) point of the
% grid. We also note that the SIFT array has dimensions equal to the
% size of the grid we want with the additional dimension of the 128
% features we want.
sift_arr=zeros([length(grid_y) length(grid_x) Options.Angles* ...
Options.numBins*Options.numBins], ...
'single');
b = 0;
% The initialization of the loop is done in such a way that it runs for
% the total number of bins in each dimension of the patch for the SIFT
% descriptors.
for n = 1:Options.numBins*Options.numBins
% Every 8 pixels, we place the data from the orientation image in
% the third argument of sift_arr. Per iteration, we center on the
% respective grid points and at the given coordinates we get the
% orientation of the corners from the third dimension of the
% orientation image matrix.
sift_arr(:,:,b+1:b+Options.Angles) = I_orientation(grid_y+ ...
sample_y(n), grid_x+sample_x(n), :);
b = b+Options.Angles;
end
clear I_orientation
% Outputs:
[grid_x,grid_y] = meshgrid(grid_x, grid_y);
[nrows, ncols, cols] = size(sift_arr);
%% Normalizing the SIFT desriptors
% Normalize SIFT descriptors slow, good normalization that respects the
% flat areas
% We form a global matrix, where the first dimension is the product of
% the image grid dimensions and the second dimension is the number of
% features.
sift_arr = reshape(sift_arr, [nrows*ncols Options.Angles*Options.numBins* ...
Options.numBins]);
sift_arr = SIFTnormalizationVasilakis(sift_arr);
% We change the dimensions of the sift_arr table to a-by-b-by-128.
sift_arr = reshape(sift_arr, [nrows ncols Options.Angles* ...
Options.numBins*Options.numBins]);
% slow bad normalization that does not respect the flat areas ct = .1;
% sift_arr = sift_arr + ct; tmp = sqrt(sum(sift_arr.^2, 3)); sift_arr =
% sift_arr ./ repmat(tmp, [1 1 size(sift_arr,3)]);
% Transform the siftArr matrix from a-by-b-by-128 into a*b-by-128
% dimensions
sift_arr = reshape(sift_arr, ...
[size(sift_arr,1)*size(sift_arr,2) size(sift_arr,3)]);
features.data = sift_arr;
features.x = grid_x(:);% + params.patchSize/2 - 0.5;
features.y = grid_y(:);% + params.patchSize/2 - 0.5;
features.wid = wid;
features.hgt = hgt;
feat_datastore{i,1} = arrayDatastore(features,"OutputType","same");
%feat_tall_datastore = tall(feat_datastore);
% whos feat_tall_datastore
clear sift_arr features tmp
end
features = feat_datastore;
end
% reset(grayTrainds);
% reset(grayTestds);