This repository has been archived by the owner on Jun 18, 2021. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathDataProcessing.py
executable file
·56 lines (46 loc) · 2.11 KB
/
DataProcessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
#!python
# Pre-process the data according to a given pattern
from functools import partial
import numpy as np
import multiprocessing
import pandas as pd
import os
import Modes
np.set_printoptions(formatter={'float_kind': lambda x: "%.2f" % x}, linewidth=200)
def processing(mode, dataFile):
currentFile = os.path.join(mode.PREPROCESSED_DIR, dataFile)
if os.path.isfile(currentFile):
preprocessed_df = pd.read_csv(currentFile, header=None)
else:
preprocessed_df = []
df = pd.read_csv(os.path.join(mode.EXTRACTED_DIR, dataFile), names=mode.COLUMNS, dtype=mode.DTYPE, skiprows=1)
print(currentFile, len(df) - len(preprocessed_df), "rows to analyze")
data = pd.DataFrame(columns=range(mode.INPUT_SIZE + mode.OUTPUT_SIZE))
for i in range(len(preprocessed_df), len(df)):
if i % mode.SAVE == 0 and i != len(preprocessed_df): # saving periodically because the process is rather long
print(currentFile, len(df) - i)
data = data.astype(int)
data.to_csv(currentFile, mode='a', header=False, index=False)
data = pd.DataFrame(columns=range(mode.INPUT_SIZE + mode.OUTPUT_SIZE))
state = df.iloc[i]
data.loc[len(data)] = mode.row_data(state, with_output=True)
if len(data):
data = data.astype(int)
data.to_csv(currentFile, mode='a', header=False, index=False)
print(currentFile, 'DONE')
def run(mode, cpu):
if not os.path.isdir(mode.PREPROCESSED_DIR):
os.makedirs(mode.PREPROCESSED_DIR)
# listing extracted files and sorting
extracted_files = [f for f in os.listdir(mode.EXTRACTED_DIR)]
l = list(map(lambda x: int(x.replace('data_', '').replace('.csv', '')), extracted_files))
l = sorted(range(len(l)), key=lambda k: l[k])
extracted_files = [extracted_files[k] for k in l]
pool = multiprocessing.Pool(processes=cpu)
fun = partial(processing, mode)
pool.map(fun, extracted_files, chunksize=1)
pool.close()
pool.join()
if __name__ == '__main__':
m = Modes.ABR_TJMCS_Mode(['9.1','9.2','9.3','9.4','9.5','9.6','9.7'])
run(m, max(multiprocessing.cpu_count() - 1, 1))