forked from Anjok07/ultimatevocalremovergui
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_v4.py
514 lines (440 loc) · 20.7 KB
/
inference_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
import pprint
import argparse
import os
import cv2
import librosa
import numpy as np
import soundfile as sf
from tqdm import tqdm
from lib_v4 import dataset
from lib_v4 import nets
from lib_v4 import spec_utils
import torch
# Command line text parsing and widget manipulation
from collections import defaultdict
import tkinter as tk
import traceback # Error Message Recent Calls
import time # Timer
class VocalRemover(object):
def __init__(self, data, text_widget: tk.Text):
self.data = data
self.text_widget = text_widget
self.models = defaultdict(lambda: None)
self.devices = defaultdict(lambda: None)
self._load_models()
# self.offset = model.offset
def _load_models(self):
self.text_widget.write('Loading models...\n') # nopep8 Write Command Text
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['instrumentalModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['instrumental'] = model
self.devices['instrumental'] = device
# -Vocal-
elif os.path.isfile(data['vocalModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['vocalModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['vocal'] = model
self.devices['vocal'] = device
# -Stack-
if os.path.isfile(self.data['stackModel']):
device = torch.device('cpu')
model = nets.CascadedASPPNet(self.data['n_fft'])
model.load_state_dict(torch.load(self.data['stackModel'],
map_location=device))
if torch.cuda.is_available() and self.data['gpu'] >= 0:
device = torch.device('cuda:{}'.format(self.data['gpu']))
model.to(device)
self.models['stack'] = model
self.devices['stack'] = device
self.text_widget.write('Done!\n')
def _execute(self, X_mag_pad, roi_size, n_window, device, model):
model.eval()
with torch.no_grad():
preds = []
for i in tqdm(range(n_window)):
start = i * roi_size
X_mag_window = X_mag_pad[None, :, :,
start:start + self.data['window_size']]
X_mag_window = torch.from_numpy(X_mag_window).to(device)
pred = model.predict(X_mag_window)
pred = pred.detach().cpu().numpy()
preds.append(pred[0])
pred = np.concatenate(preds, axis=2)
return pred
def preprocess(self, X_spec):
X_mag = np.abs(X_spec)
X_phase = np.angle(X_spec)
return X_mag, X_phase
def inference(self, X_spec, device, model):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
self.data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred = pred[:, :, :n_frame]
return pred * coef, X_mag, np.exp(1.j * X_phase)
def inference_tta(self, X_spec, device, model):
X_mag, X_phase = self.preprocess(X_spec)
coef = X_mag.max()
X_mag_pre = X_mag / coef
n_frame = X_mag_pre.shape[2]
pad_l, pad_r, roi_size = dataset.make_padding(n_frame,
self.data['window_size'], model.offset)
n_window = int(np.ceil(n_frame / roi_size))
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred = pred[:, :, :n_frame]
pad_l += roi_size // 2
pad_r += roi_size // 2
n_window += 1
X_mag_pad = np.pad(
X_mag_pre, ((0, 0), (0, 0), (pad_l, pad_r)), mode='constant')
pred_tta = self._execute(X_mag_pad, roi_size, n_window,
device, model)
pred_tta = pred_tta[:, :, roi_size // 2:]
pred_tta = pred_tta[:, :, :n_frame]
return (pred + pred_tta) * 0.5 * coef, X_mag, np.exp(1.j * X_phase)
data = {
# Paths
'input_paths': None,
'export_path': None,
# Processing Options
'gpu': -1,
'postprocess': True,
'tta': True,
'output_image': True,
# Models
'instrumentalModel': None,
'vocalModel': None,
'stackModel': None,
'useModel': None,
# Stack Options
'stackPasses': 0,
'stackOnly': False,
'saveAllStacked': False,
# Model Folder
'modelFolder': False,
# Constants
'sr': 44_100,
'hop_length': 1_024,
'window_size': 320,
'n_fft': 2_048,
}
default_sr = data['sr']
default_hop_length = data['hop_length']
default_window_size = data['window_size']
default_n_fft = data['n_fft']
def update_progress(progress_var, total_files, total_loops, file_num, loop_num, step: float = 1):
"""Calculate the progress for the progress widget in the GUI"""
base = (100 / total_files)
progress = base * (file_num - 1)
progress += (base / total_loops) * (loop_num + step)
progress_var.set(progress)
def get_baseText(total_files, total_loops, file_num, loop_num):
"""Create the base text for the command widget"""
text = 'File {file_num}/{total_files}:{loop} '.format(file_num=file_num,
total_files=total_files,
loop='' if total_loops <= 1 else f' ({loop_num+1}/{total_loops})')
return text
def update_constants(model_name):
"""
Decode the conversion settings from the model's name
"""
global data
text = model_name.replace('.pth', '')
text_parts = text.split('_')[1:]
data['sr'] = default_sr
data['hop_length'] = default_hop_length
data['window_size'] = default_window_size
data['n_fft'] = default_n_fft
for text_part in text_parts:
if 'sr' in text_part:
text_part = text_part.replace('sr', '')
if text_part.isdecimal():
try:
data['sr'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'hl' in text_part:
text_part = text_part.replace('hl', '')
if text_part.isdecimal():
try:
data['hop_length'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'w' in text_part:
text_part = text_part.replace('w', '')
if text_part.isdecimal():
try:
data['window_size'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
if 'nf' in text_part:
text_part = text_part.replace('nf', '')
if text_part.isdecimal():
try:
data['n_fft'] = int(text_part)
continue
except ValueError:
# Cannot convert string to int
pass
def determineModelFolderName():
"""
Determine the name that is used for the folder and appended
to the back of the music files
"""
modelFolderName = ''
if not data['modelFolder']:
# Model Test Mode not selected
return modelFolderName
# -Instrumental-
if os.path.isfile(data['instrumentalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['instrumentalModel']))[0]
# -Vocal-
elif os.path.isfile(data['vocalModel']):
modelFolderName += os.path.splitext(os.path.basename(data['vocalModel']))[0]
# -Stack-
if os.path.isfile(data['stackModel']):
modelFolderName += '-' + os.path.splitext(os.path.basename(data['stackModel']))[0]
return modelFolderName
def main(window: tk.Wm, text_widget: tk.Text, button_widget: tk.Button, progress_var: tk.Variable,
**kwargs: dict):
def save_files(wav_instrument, wav_vocals):
"""Save output music files"""
vocal_name = None
instrumental_name = None
save_path = os.path.dirname(base_name)
# Get the Suffix Name
if (not loop_num or
loop_num == (total_loops - 1)): # First or Last Loop
if data['stackOnly']:
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
vocal_name = '(Vocals)'
instrumental_name = '(Instrumental)'
else:
vocal_name = '(Vocal_Final_Stacked_Output)'
instrumental_name = '(Instrumental_Final_Stacked_Output)'
elif data['useModel'] == 'instrumental':
if not loop_num: # First Loop
vocal_name = '(Vocals)'
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
instrumental_name = '(Instrumental)'
else:
instrumental_name = '(Instrumental_Final_Stacked_Output)'
elif data['useModel'] == 'vocal':
if not loop_num: # First Loop
instrumental_name = '(Instrumental)'
if loop_num == (total_loops - 1): # Last Loop
if not (total_loops - 1): # Only 1 Loop
vocal_name = '(Vocals)'
else:
vocal_name = '(Vocals_Final_Stacked_Output)'
if data['useModel'] == 'vocal':
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
elif data['saveAllStacked']:
folder_name = os.path.basename(base_name) + ' Stacked Outputs' # nopep8
save_path = os.path.join(save_path, folder_name)
if not os.path.isdir(save_path):
os.mkdir(save_path)
if data['stackOnly']:
vocal_name = f'(Vocal_{loop_num}_Stacked_Output)'
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
elif (data['useModel'] == 'vocal' or
data['useModel'] == 'instrumental'):
vocal_name = f'(Vocals_{loop_num}_Stacked_Output)'
instrumental_name = f'(Instrumental_{loop_num}_Stacked_Output)'
if data['useModel'] == 'vocal':
# Reverse names
vocal_name, instrumental_name = instrumental_name, vocal_name
# Save Temp File
# For instrumental the instrumental is the temp file
# and for vocal the instrumental is the temp file due
# to reversement
sf.write(f'temp.wav',
wav_instrument.T, sr)
# -Save files-
# Instrumental
if instrumental_name is not None:
instrumental_path = os.path.join(save_path,
f'{os.path.basename(base_name)}_{instrumental_name}_{modelFolderName}.wav')
sf.write(instrumental_path,
wav_instrument.T, sr)
# Vocal
if vocal_name is not None:
vocal_path = os.path.join(save_path,
f'{os.path.basename(base_name)}_{vocal_name}_{modelFolderName}.wav')
sf.write(vocal_path,
wav_vocals.T, sr)
data.update(kwargs)
# Update default settings
global default_sr
global default_hop_length
global default_window_size
global default_n_fft
default_sr = data['sr']
default_hop_length = data['hop_length']
default_window_size = data['window_size']
default_n_fft = data['n_fft']
stime = time.perf_counter()
progress_var.set(0)
text_widget.clear()
button_widget.configure(state=tk.DISABLED) # Disable Button
vocal_remover = VocalRemover(data, text_widget)
modelFolderName = determineModelFolderName()
if modelFolderName:
folder_path = os.path.join(data["export_path"], modelFolderName)
if not os.path.isdir(folder_path):
os.mkdir(folder_path)
# Determine Loops
total_loops = data['stackPasses']
if not data['stackOnly']:
total_loops += 1
for file_num, music_file in enumerate(data['input_paths'], start=1):
try:
# Determine File Name
base_name = os.path.join(folder_path, f'{file_num}_{os.path.splitext(os.path.basename(music_file))[0]}')
# --Seperate Music Files--
for loop_num in range(total_loops):
# -Determine which model will be used-
if not loop_num:
# First Iteration
if data['stackOnly']:
if os.path.isfile(data['stackModel']):
model_name = os.path.basename(data['stackModel'])
model = vocal_remover.models['stack']
device = vocal_remover.devices['stack']
else:
raise ValueError(f'Selected stack only model, however, stack model path file cannot be found\nPath: "{data["stackModel"]}"') # nopep8
else:
model_name = os.path.basename(data[f'{data["useModel"]}Model'])
model = vocal_remover.models[data['useModel']]
device = vocal_remover.devices[data['useModel']]
else:
model_name = os.path.basename(data['stackModel'])
# Every other iteration
model = vocal_remover.models['stack']
device = vocal_remover.devices['stack']
# Reference new music file
music_file = 'temp.wav'
# -Get text and update progress-
base_text = get_baseText(total_files=len(data['input_paths']),
total_loops=total_loops,
file_num=file_num,
loop_num=loop_num)
progress_kwargs = {'progress_var': progress_var,
'total_files': len(data['input_paths']),
'total_loops': total_loops,
'file_num': file_num,
'loop_num': loop_num}
update_progress(**progress_kwargs,
step=0)
update_constants(model_name)
# -Go through the different steps of seperation-
# Wave source
text_widget.write(base_text + 'Loading wave source...\n')
X, sr = librosa.load(music_file, data['sr'], False,
dtype=np.float32, res_type='kaiser_fast')
if X.ndim == 1:
X = np.asarray([X, X])
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.1)
# Stft of wave source
text_widget.write(base_text + 'Stft of wave source...\n')
X = spec_utils.wave_to_spectrogram(X,
data['hop_length'], data['n_fft'])
if data['tta']:
pred, X_mag, X_phase = vocal_remover.inference_tta(X,
device=device,
model=model)
else:
pred, X_mag, X_phase = vocal_remover.inference(X,
device=device,
model=model)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.6)
# Postprocess
if data['postprocess']:
text_widget.write(base_text + 'Post processing...\n')
pred_inv = np.clip(X_mag - pred, 0, np.inf)
pred = spec_utils.mask_silence(pred, pred_inv)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.65)
# Inverse stft
text_widget.write(base_text + 'Inverse stft of instruments and vocals...\n') # nopep8
y_spec = pred * X_phase
wav_instrument = spec_utils.spectrogram_to_wave(y_spec,
hop_length=data['hop_length'])
v_spec = np.clip(X_mag - pred, 0, np.inf) * X_phase
wav_vocals = spec_utils.spectrogram_to_wave(v_spec,
hop_length=data['hop_length'])
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.7)
# Save output music files
text_widget.write(base_text + 'Saving Files...\n')
save_files(wav_instrument, wav_vocals)
text_widget.write(base_text + 'Done!\n')
update_progress(**progress_kwargs,
step=0.8)
else:
# Save output image
if data['output_image']:
with open('{}_Instruments.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(y_spec)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
with open('{}_Vocals.jpg'.format(base_name), mode='wb') as f:
image = spec_utils.spectrogram_to_image(v_spec)
_, bin_image = cv2.imencode('.jpg', image)
bin_image.tofile(f)
text_widget.write(base_text + 'Completed Seperation!\n\n')
except Exception as e:
traceback_text = ''.join(traceback.format_tb(e.__traceback__))
message = f'Traceback Error: "{traceback_text}"\n{type(e).__name__}: "{e}"\nFile: {music_file}\nLoop: {loop_num}\nPlease contact the creator and attach a screenshot of this error with the file and settings that caused it!'
tk.messagebox.showerror(master=window,
title='Untracked Error',
message=message)
print(traceback_text)
print(type(e).__name__, e)
print(message)
progress_var.set(0)
button_widget.configure(state=tk.NORMAL) # Enable Button
return
os.remove('temp.wav')
progress_var.set(0)
text_widget.write(f'Conversion(s) Completed and Saving all Files!\n')
text_widget.write(f'Time Elapsed: {time.strftime("%H:%M:%S", time.gmtime(int(time.perf_counter() - stime)))}') # nopep8
torch.cuda.empty_cache()
button_widget.configure(state=tk.NORMAL) # Enable Button