-
Notifications
You must be signed in to change notification settings - Fork 9
/
inference.py
175 lines (129 loc) · 6.14 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import argparse
import os
import sys
import datetime
import torch
import torch.nn as nn
import src.models as models
import src.dataset.box_pose_dataset_factory as dataset_factory
import src.dataset.samplers.pose.pose_sampler as pose_sampler
import src.dataset.samplers.intrinsics_generator as intrinsics_generator
import src.dataset.depthmap_dataset as depthmap_dataset
from src.utils import geometric
from src.io import plywrite, box_model_loader
#from src.io import multidimentional_imsave
from src.utils.image_utils import colorize_label_map, get_color_map_nclasses_17, get_color_map_nclasses_25, get_color_map_nclasses_21
import cv2
import numpy as np
import random
import subprocess
from tqdm import tqdm
from src.utils import projections
from src.dataset.rendering.box_renderer import BoxRenderFlags
from src.utils.geometric import compute_soft_correspondences
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def parse_arguments(args):
usage_text = (
"StructureNet inference."
"Usage: python inference.py [options],"
" with [options]:"
)
parser = argparse.ArgumentParser(description=usage_text)
# evaluation
parser.add_argument('--confidence_threshold', type = float, default = 0.0, help ='confidence probability threshold to reject uncofident predictions')
parser.add_argument('--scale', type = float, default = 0.001, help = 'Factor that converts input to meters')
# gpu
parser.add_argument('--batch_size', type = int, default = 24, help = 'Batch size for inference')
# paths
parser.add_argument('--input_path', type = str, help = "Path to the input depth maps to test against")
parser.add_argument('--output_path', type = str, help = "Path to output directory")
#model
parser.add_argument('--saved_params_path', default = "default", type=str, help = 'Path to model params file')
parser.add_argument('--nclasses', default = 25, type=int, help = 'Number of classes of the model, if not defined inside the checkpoint file')
parser.add_argument('--ndf', default=8, type = int,help = 'Ndf of model')
# hardware
parser.add_argument('-g','--gpu', type=str, default='0', help='The ids of the GPU(s) that will be utilized. (e.g. 0 or 0,1, or 0,2). Use -1 for CPU.')
# debug
parser.add_argument('--debug', type=int, default=0, help ="debug output. 1 true, 0 false")
return parser.parse_known_args(args)
def inference(args,device):
#create model parameters
model_params = {
'width': 320,
'height': 180,
'ndf': 32,
'upsample_type': "nearest",
}
#random setup
rnd_seed = 1234
random.seed(rnd_seed) # this will generate fixed seeds of subcomponents that create the datasets (factory uses random.random() to initialize seeds)
torch.random.manual_seed(rnd_seed)
print("Loading previously saved model from {}".format(args.saved_params_path))
checkpoint = torch.load(args.saved_params_path)
color_func = {
17 : get_color_map_nclasses_17,
21 : get_color_map_nclasses_21,
25 : get_color_map_nclasses_25
}
model_name = checkpoint['model_name']
if 'nclasses' in checkpoint:
nclasses = checkpoint['nclasses']
else:
nclasses = args.nclasses
if 'ndf' in checkpoint:
model_params['ndf'] = checkpoint['ndf']
model_params['nclasses'] = nclasses
model = models.get_UNet_model(model_name, model_params)
model.load_state_dict(checkpoint['state_dict'])
model.to(device)
model.eval()
print('Loaded model name: {}'.format(model_name))
datasetparams = depthmap_dataset.DepthmapDatasetParams(args.input_path, args.scale) # scale millimeters to meters
dsiterator = depthmap_dataset.DepthmapDataset(datasetparams)
dataset = torch.utils.data.DataLoader(dsiterator,\
batch_size = args.batch_size, shuffle=False,\
num_workers = 0, pin_memory=False)
confidence_threshold = args.confidence_threshold
frame_index = 0
pbar = tqdm(total=dataset.__len__())
for batch_id, batch in enumerate(dataset):
#resize input
_,_,h,w = batch.shape
batch_d = nn.functional.interpolate(batch, size=[180, 320], mode='nearest').to(device)
#inference
pred = model(batch_d)
if (len(pred) == 2):
activs, out = pred
elif (len(pred) == 3):
activs, heat_pred, out = pred
elif (len(pred) == 4):
activs, heat_pred, out, normals = pred
else:
print("unexpected model return value. expected tuple of length 2, 3 or 4.")
break
batch_size = batch.shape[0]
for index in range(batch_size):
fpath_label_pred = args.output_path + "\\" + str(frame_index) + '_label_pred.png'
confidence_t, labels_pred_t = out[index].max(0)
confidence_t = torch.exp(confidence_t) # convert log probability to probability
labels_pred_t [confidence_t < confidence_threshold] = nclasses # uncertain classs
labels_pred_t = nn.functional.interpolate(labels_pred_t.unsqueeze(0).unsqueeze(0).float(), size=[h, w], mode='nearest').to(device).squeeze().long()
labels_pred = labels_pred_t.cpu().data.numpy()
labels_pred_n = colorize_label_map(labels_pred, color_func[nclasses]())
cv2.imwrite(fpath_label_pred,labels_pred_n)
fpath_normals_gt = args.output_path + "\\" + str(frame_index) + '_normals_gt.png'
frame_index += 1
pbar.update()
if __name__ == "__main__":
args, uknown = parse_arguments(sys.argv)
gpus = [int(id) for id in args.gpu.split(',') if int(id) >= 0]
device = torch.device("cuda:{}" .format(gpus[0]) if torch.cuda.is_available() and len(gpus) > 0 and gpus[0] >= 0 else "cpu")
inference(args, device)