-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathadver_trainer.py
678 lines (581 loc) · 27.6 KB
/
adver_trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
# -*- coding: utf-8 -*-
import time
from tqdm import tqdm
import argparse
import pickle
import torch
import torch.optim as optim
import numpy as np
import torchvision.transforms as transforms
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch.utils.data import DataLoader
from torch.autograd import Variable
from utils.discriminator import *
from utils.models import *
from utils.dataset import *
from utils.loss import *
from utils.logger import Logger
class DebuggerBase:
def __init__(self, args):
self.args = args
self.min_val_loss = 10000000000
self.min_val_tag_loss = 1000000
self.min_val_stop_loss = 1000000
self.min_val_word_loss = 10000000
self.min_train_loss = 10000000000
self.min_train_tag_loss = 1000000
self.min_train_stop_loss = 1000000
self.min_train_word_loss = 10000000
self.params = None
self.params_d = None
self._init_model_path()
self.model_dir = self._init_model_dir()
self.writer = self._init_writer()
self.train_transform = self._init_train_transform()
self.val_transform = self._init_val_transform()
self.vocab = self._init_vocab()
self.model_state_dict = self._load_model_state_dict()
self.transform = self.__init_transform()
self.data_loader = self.__init_data_loader(self.args.train_file_list) # 随机生成 the path for test file list
# self.train_data_loader = self._init_data_loader(self.args.train_file_list, self.train_transform)
# self.val_data_loader = self._init_data_loader(self.args.val_file_list, self.val_transform)
self.extractor = self._init_visual_extractor()
self.mlc = self._init_mlc()
self.co_attention = self._init_co_attention()
self.sentence_model = self._init_sentence_model()
self.word_model = self._init_word_model()
self.disc_model = self._init_disc_model()
self.ce_criterion = self._init_ce_criterion()
self.mse_criterion = self._init_mse_criterion()
self.adver_loss = self._init_adver_loss()
self.reward = torch.zeros(self.args.batch_size, 1)
self.optimizer = self._init_optimizer()
self.scheduler = self._init_scheduler() # 自动调整学习率
self.logger = self._init_logger()
self.writer.write("{}\n".format(self.args))
def train(self):
train_loss = self._epoch_train()
self.scheduler.step(train_loss) # 对lr进行调整
print(
"{} - [Update generator model] train loss:{} - lr:{}\n".format(self._get_now(),
train_loss,
self.optimizer.param_groups[0]['lr']))
# self._save_model(epoch_id,
# train_loss)
return train_loss
def _epoch_train(self):
raise NotImplementedError
def _epoch_val(self):
raise NotImplementedError
def __init_transform(self):
transform = transforms.Compose([
transforms.Resize(self.args.resize),
transforms.RandomCrop(self.args.crop_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
return transform
def _init_train_transform(self):
transform = transforms.Compose([
transforms.Resize(self.args.resize),
transforms.RandomCrop(self.args.crop_size),
# transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
return transform
def _init_val_transform(self):
transform = transforms.Compose([
transforms.Resize((self.args.crop_size, self.args.crop_size)),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406),
(0.229, 0.224, 0.225))])
return transform
def _init_model_dir(self):
model_dir = os.path.join(self.args.model_path, self.args.saved_model_name)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
model_dir = os.path.join(model_dir)
if not os.path.exists(model_dir):
os.makedirs(model_dir)
return model_dir
def _init_vocab(self):
with open(self.args.vocab_path, 'rb') as f:
vocab = pickle.load(f)
print("Vocabulary Size:{}\n".format(len(vocab)))
return vocab
def _load_model_state_dict(self):
self.start_epoch = 0
try:
model_state = torch.load(self.args.load_model_path)
self.start_epoch = model_state['epoch']
print("[Load Model-{} Succeed!]\n".format(self.args.load_model_path))
print("Load From Epoch {}\n".format(model_state['epoch']))
return model_state
except Exception as err:
print("[Load Model Failed] {}\n".format(err))
return None
def _init_visual_extractor(self):
model = VisualFeatureExtractor(model_name=self.args.visual_model_name,
pretrained=self.args.pretrained)
try:
model_state = torch.load(self.args.load_visual_model_path)
model.load_state_dict(model_state['extractor'])
# print("[Load Visual Extractor Succeed!]\n")
except Exception as err:
print("[Load Visual Extractor Model Failed] {}\n".format(err))
if not self.args.visual_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = True
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_mlc(self):
model = MLC(classes=self.args.classes,
sementic_features_dim=self.args.sementic_features_dim,
fc_in_features=self.extractor.out_features,
k=self.args.k)
try:
model_state = torch.load(self.args.load_mlc_model_path)
model.load_state_dict(model_state['mlc'])
# print("[Load MLC Succeed!]\n")
except Exception as err:
print("[Load MLC Failed {}!]\n".format(err))
if not self.args.mlc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = True
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_co_attention(self):
model = CoAttention(version=self.args.attention_version,
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
visual_size=self.extractor.out_features,
k=self.args.k,
momentum=self.args.momentum)
try:
model_state = torch.load(self.args.load_co_model_path)
model.load_state_dict(model_state['co_attention'])
# print("[Load Co-attention Succeed!]\n")
except Exception as err:
print("[Load Co-attention Failed {}!]\n".format(err))
if not self.args.co_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_sentence_model(self):
raise NotImplementedError
def _init_word_model(self):
raise NotImplementedError
def _init_disc_model(self): # 加载判别器
model = Discriminator(seq_length=1,
vocab_size=2195,
emb_size=32,
filter_size=[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],
num_filter=[100, 200, 200, 200, 200, 100, 100, 100, 100, 100, 160, 160],
dropoutRate=0.1)
try:
model_state = torch.load(self.args.load_disc_model_path)
model.load_state_dict(model_state['discriminator'])
# print("[Load Discriminator Succeed!]\n")
except Exception as err:
print("[Load Discriminator Model Failed] {}\n".format(err))
if not self.args.disc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params_d:
self.params_d += list(model.parameters())
else:
self.params_d = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_discs_model(self):
model = Discriminator(vocab_size=self.vocab_count,
input_size=50,
hidden_size=100,
num_class=2,
num_layers=1)
try:
model = torch.load(self.args.load_discs_model_path)
print("[Load Discriminator Succeed!]\n")
except Exception as err:
print("[Load Discriminator Model Failed] {}\n".format(err))
if not self.args.disc_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = False
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def __init_data_loader(self, file_list):
data_loader = get_loader(image_dir=self.args.image_dir,
caption_json=self.args.caption_json,
file_list=file_list,
vocabulary=self.vocab,
transform=self.transform,
batch_size=self.args.batch_size,
s_max=self.args.s_max,
n_max=self.args.n_max,
shuffle=False)
return data_loader
@staticmethod
def _init_ce_criterion():
return nn.CrossEntropyLoss(size_average=False, reduce=False)
@staticmethod
def _init_mse_criterion():
return nn.MSELoss()
@staticmethod
def _init_adver_loss():
return 0
def _init_optimizer(self):
return torch.optim.Adam(params=self.params, lr=self.args.learning_rate)
def _log(self,
train_tags_loss,
train_stop_loss,
train_word_loss,
train_loss,
lr,
epoch):
info = {
'train tags loss': train_tags_loss,
'train stop loss': train_stop_loss,
'train word loss': train_word_loss,
'train loss': train_loss,
'learning rate': lr
}
for tag, value in info.items():
self.logger.scalar_summary(tag, value, epoch + 1)
def _init_logger(self):
logger = Logger(os.path.join(self.model_dir, 'logs'))
return logger
def _init_writer(self):
writer = open(os.path.join(self.model_dir, 'logs.txt'), 'w')
return writer
def _to_var(self, x, requires_grad=False):
if self.args.cuda:
x = x.cuda()
return Variable(x, requires_grad=requires_grad)
def _get_date(self):
return str(time.strftime('%Y%m%d', time.gmtime()))
def _get_now(self):
return str(time.strftime('%Y%m%d-%H:%M', time.gmtime()))
def _init_scheduler(self):
scheduler = ReduceLROnPlateau(self.optimizer, 'min', patience=self.args.patience, factor=0.1)
return scheduler
def _init_model_path(self):
if not os.path.exists(self.args.model_path):
os.makedirs(self.args.model_path)
def _init_log_path(self):
if not os.path.exists(self.args.log_path):
os.makedirs(self.args.log_path)
def _save_model(self,
epoch_id,
train_loss):
def save_whole_model(_filename):
print("Saved Model in {}\n".format(_filename))
torch.save({'extractor': self.extractor.state_dict(),
'mlc': self.mlc.state_dict(),
'co_attention': self.co_attention.state_dict(),
'sentence_model': self.sentence_model.state_dict(),
'word_model': self.word_model.state_dict(),
'optimizer': self.optimizer.state_dict(),
'epoch': epoch_id},
os.path.join(self.model_dir, "{}".format(_filename)))
# file_name = "train_best_loss.pth.tar"
# save_whole_model(file_name)
# if loss < self.min_train_loss:
# file_name = "disc_train_best_loss.pth.tar"
# save_whole_model(file_name)
# self.min_train_loss = loss
class LSTMDebugger(DebuggerBase):
def _init_(self, args):
DebuggerBase.__init__(self, args)
self.args = args
self.reward = torch.zeros(self.args.batch_size, 1)
self.emb_size = 32
def __vec2sent(self, array): # array是word_id 将Word_id转成单词
sampled_caption = []
for word_id in array:
word = self.vocab.get_word_by_id(word_id)
if word == '<start>':
continue
if word == '<end>' or word == '<pad>':
break
sampled_caption.append(word)
return sampled_caption
def loss_with_reward(self, prediction, x, rewards):
embedding = nn.Embedding(2195, 2195)
prediction = embedding(prediction.long())
# print ("prediction after embedding:", prediction.shape)
x1 = x.contiguous().view([-1, 1]).long()
# print ("x1:", x1.shape)
one_hot = torch.Tensor(x1.shape[0], 2195).cuda()
one_hot.zero_()
x2 = one_hot.scatter_(1, x1, 1)
pred1 = prediction.view([-1, 2195])
pred2 = torch.log(torch.clamp(pred1, min=1e-20, max=1.0))
prod = torch.mul(x2.cuda(), pred2.cuda())
reduced_prod = torch.sum(prod, dim=1)
rewards_prod = torch.mul(reduced_prod.cuda(), rewards.view([-1]).cuda())
generator_loss = torch.sum(rewards_prod)
return -generator_loss
def loss_with_reward_1(self, prediction, x, rewards):
embedding = nn.Embedding(2195, 2195)
prediction = embedding(prediction.long())
# print ("prediction after embedding:", prediction.shape)
x1 = x.contiguous().view([-1, 1]).long()
# print ("x1:", x1.shape)
one_hot = torch.Tensor(x1.shape[0], 2195).cuda()
one_hot.zero_()
x2 = one_hot.scatter_(1, x1, 1)
pred1 = prediction.view([-1, 2195])
pred2 = torch.log(torch.clamp(pred1, min=1e-20, max=1.0))
prod = torch.mul(x2.cuda(), pred2.cuda())
reduced_prod = torch.sum(prod, dim=1)
rewards_prod = torch.mul(reduced_prod.cuda(), rewards.view([-1]).cuda())
generator_loss = torch.sum(rewards_prod)
return -generator_loss
def _epoch_train(self):
tag_loss, stop_loss, word_loss, loss = 0, 0, 0, 0
self.extractor.train()
self.mlc.train()
self.co_attention.train()
self.sentence_model.train()
self.word_model.train()
progress_bar = tqdm(self.data_loader, desc='Adversarial')
for images, image_id, label, captions, prob in progress_bar:
batch_tag_loss, batch_stop_loss, batch_word_loss, batch_sentence_loss, batch_loss = 0, 0, 0, 0, 0
images = self._to_var(images, requires_grad=False)
visual_features, avg_features = self.extractor.forward(images)
tags, semantic_features = self.mlc.forward(avg_features)
# 标签损失
batch_tag_loss = self.mse_criterion(tags, self._to_var(label, requires_grad=False)).sum()
sentence_states = None
# 中间层
prev_hidden_states = self._to_var(torch.zeros(images.shape[0], 1, self.args.hidden_size), requires_grad=False)
prob_real = self._to_var(torch.Tensor(prob).long(), requires_grad=False)
context = self._to_var(torch.Tensor(captions).long(), requires_grad=False)
pred_sentences = {} # 预测
for i in image_id:
pred_sentences[i] = {} # 具体到每一张
for sentence_index in range(0, captions.shape[1]): # 是s_max=6 一个caption里有六句话
ctx, alpha_v, alpha_a = self.co_attention.forward(avg_features,
semantic_features,
prev_hidden_states)
topic, p_stop, hidden_states, sentence_states = self.sentence_model.forward(ctx,
prev_hidden_states,
sentence_states)
batch_stop_loss += self.ce_criterion(p_stop.squeeze(), prob_real[:, sentence_index]).sum()
start_tokens = np.zeros((topic.shape[0], 1)) # [4, 1]
start_tokens[:, 0] = self.vocab('<start>')
start_tokens = self._to_var(torch.Tensor(start_tokens).long(), requires_grad=False)
sample_ids = self.word_model.sample(topic, start_tokens)
reward = []
sample_ids = torch.from_numpy(np.array(sample_ids))
for j in range(0, sample_ids.shape[1]):
output = self.disc_model.forward(sample_ids[:, j:j + 1].cuda().long())
output = self._to_var(output, requires_grad=False)
indices = torch.LongTensor([0])
out = torch.index_select(output, 1, indices.cuda())
for i in out:
reward.append(i.item())
reward = np.transpose(np.array(reward)) / 1.0
reward1 = torch.Tensor(reward)
s = []
a = [0]
for i in range(0, context[:, sentence_index, :].shape[0]):
t = context[:, sentence_index, :][i].tolist() # 将tensor转为list
for j in range(0, self.args.n_max - context[:, sentence_index, :].shape[1]):
t.extend(a)
s.append(t)
context1 = torch.Tensor(s)
batch_sentence_loss += (self.loss_with_reward(sample_ids, context1.cuda(), reward1)).sum()
batch_loss = self.args.lambda_tag * batch_tag_loss \
+ self.args.lambda_stop * batch_stop_loss \
+ self.args.lambda_word * batch_sentence_loss
self.optimizer.zero_grad() # 把梯度置零,也就是把loss关于weight的导数变成0
batch_loss.backward() # 反向传播求梯度retain_graph=True
if self.args.clip > 0:
# 最简单粗暴的方法,设定阈值,当梯度小于/大于阈值时,更新的梯度为阈值 梯度裁剪
torch.nn.utils.clip_grad_norm(self.sentence_model.parameters(), self.args.clip)
torch.nn.utils.clip_grad_norm(self.word_model.parameters(), self.args.clip)
self.optimizer.step() # 更新所有参数
tag_loss += self.args.lambda_tag * batch_tag_loss
stop_loss += self.args.lambda_stop * batch_stop_loss
word_loss += self.args.lambda_word * batch_word_loss
loss += batch_loss # 根本原因
return loss
def _init_sentence_model(self):
model = SentenceLSTM(version=self.args.sent_version,
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
num_layers=self.args.sentence_num_layers,
dropout=self.args.dropout,
momentum=self.args.momentum)
try:
model_state = torch.load(self.args.load_sentence_model_path)
model.load_state_dict(model_state['sentence_model'])
# print("[Load Sentence Model Succeed!\n")
except Exception as err:
print("[Load Sentence model Failed {}!]\n".format(err))
if not self.args.sentence_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = True # 反向传播后调节参数时(不)调节它
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
def _init_word_model(self):
model = WordLSTM(vocab_size=len(self.vocab),
embed_size=self.args.embed_size,
hidden_size=self.args.hidden_size,
num_layers=self.args.word_num_layers,
n_max=self.args.n_max)
try:
model_state = torch.load(self.args.load_word_model_path)
model.load_state_dict(model_state['word_model'])
# print("[Load Word Model Succeed!\n")
except Exception as err:
print("[Load Word model Failed {}!]\n".format(err))
if not self.args.word_trained:
for i, param in enumerate(model.parameters()):
param.requires_grad = True
else:
if self.params:
self.params += list(model.parameters())
else:
self.params = list(model.parameters())
if self.args.cuda:
model = model.cuda()
return model
if __name__ == '__main__':
import warnings
warnings.filterwarnings("ignore")
parser = argparse.ArgumentParser()
"""
Data Argument
"""
parser.add_argument('--patience', type=int, default=50)
parser.add_argument('--mode', type=str, default='train')
# Path Argument
parser.add_argument('--vocab_path', type=str, default='./data/new_data/vocab.pkl',
help='the path for vocabulary object')
parser.add_argument('--image_dir', type=str, default='./data/images',
help='the path for images')
parser.add_argument('--caption_json', type=str, default='./data/new_data/captions.json',
help='path for captions')
parser.add_argument('--train_file_list', type=str, default='./data/new_data/adver_list.txt',
help='the train array')
parser.add_argument('--val_file_list', type=str, default='./data/new_data/val_data.txt',
help='the val array')
# transforms argument
parser.add_argument('--resize', type=int, default=256,
help='size for resizing images')
parser.add_argument('--crop_size', type=int, default=224,
help='size for randomly cropping images')
# Disc Load/Save model argument
parser.add_argument('--disc_model_path', type=str, default='./report_disc_models/',
help='path for saving disc trained models')
parser.add_argument('--discs_model_path', type=str, default='./report_discs_models/',
help='path for saving disc model')
parser.add_argument('--load_discs_model_path', type=str, default='.',
help='The path of loaded discs model')
parser.add_argument('--disc_trained', action='store_true', default=True,
help='Whether train disc or not')
parser.add_argument('--load_disc_model_path', type=str,
default='./report_disc_models/v4/disc_train_best_loss.pth.tar',
help='The path of loaded model')
parser.add_argument('--disc_saved_model_name', type=str, default='./report_disc_models/v4/',
help='The name of saved model')
# Load/Save model argument
parser.add_argument('--model_path', type=str, default='./report_v4_models/v4/',
help='path for saving trained models')
parser.add_argument('--load_model_path', type=str, default='v4/train_best_loss.pth.tar',
help='The path of loaded model')
parser.add_argument('--saved_model_name', type=str, default='v4',
help='The name of saved model')
"""
Model Argument
"""
parser.add_argument('--momentum', type=int, default=0.1)
# VisualFeatureExtractor
parser.add_argument('--visual_model_name', type=str, default='resnet152',
help='CNN model name')
parser.add_argument('--pretrained', action='store_true', default=False,
help='not using pretrained model when training')
parser.add_argument('--load_visual_model_path', type=str,
default='.')
parser.add_argument('--visual_trained', action='store_true', default=False,
help='Whether train visual extractor or not')
# MLC
parser.add_argument('--classes', type=int, default=210)
parser.add_argument('--sementic_features_dim', type=int, default=512)
parser.add_argument('--k', type=int, default=6)
parser.add_argument('--load_mlc_model_path', type=str,
default='.')
parser.add_argument('--mlc_trained', action='store_true', default=False)
# Co-Attention
parser.add_argument('--attention_version', type=str, default='v4')
parser.add_argument('--embed_size', type=int, default=512)
parser.add_argument('--hidden_size', type=int, default=512)
parser.add_argument('--load_co_model_path', type=str, default='.')
parser.add_argument('--co_trained', action='store_true', default=False)
# Sentence Model
parser.add_argument('--sent_version', type=str, default='v1')
parser.add_argument('--sentence_num_layers', type=int, default=2)
parser.add_argument('--dropout', type=float, default=0.1)
parser.add_argument('--load_sentence_model_path', type=str,
default='.')
parser.add_argument('--sentence_trained', action='store_true', default=False)
# Word Model
parser.add_argument('--word_num_layers', type=int, default=2)
parser.add_argument('--load_word_model_path', type=str,
default='.')
parser.add_argument('--word_trained', action='store_true', default=False)
"""
Training Argument
"""
parser.add_argument('--batch_size', type=int, default=8)
parser.add_argument('--learning_rate', type=int, default=0.001)
parser.add_argument('--epochs', type=int, default=1) # 1000
parser.add_argument('--clip', type=float, default=-1,
help='gradient clip, -1 means no clip (default: 0.35)')
parser.add_argument('--s_max', type=int, default=6)
parser.add_argument('--n_max', type=int, default=50)
# Loss Function
parser.add_argument('--lambda_tag', type=float, default=10000)
parser.add_argument('--lambda_stop', type=float, default=10)
parser.add_argument('--lambda_word', type=float, default=1)
args = parser.parse_args()
args.cuda = torch.cuda.is_available()
debugger = LSTMDebugger(args)
debugger.train()