generated from UofSC-Fall-2022-Math-587-001/homework1
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.tex
78 lines (70 loc) · 2.87 KB
/
main.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
\documentclass[12pt]{amsart}
\usepackage{amsmath}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage[margin=1in]{geometry}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue
}
\theoremstyle{definition}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{proposition}[theorem]{Proposition}
\newtheorem{conjecture}[theorem]{Conjecture}
\newtheorem{remark}[theorem]{Remark}
\newtheorem{example}[theorem]{Example}
\newtheorem{problem}[theorem]{Problem}
\newtheorem{notation}[theorem]{Notation}
\newtheorem{question}[theorem]{Question}
\newtheorem{caution}[theorem]{Caution}
\begin{document}
\title{Homework 2: Due Sep 6}
\maketitle
For this week, please answer the following questions from the text.
I've copied the problem itself below and the question numbers for
your convenience.
\begin{enumerate}
\item (1.6) Let $a,b,c \in \mathbb{Z}$. Use the definition of divisibility to directly prove
the following properties of divisibility.
\begin{enumerate}
\item If $a \mid b$ and $b \mid c$, then $a \mid c$.
\item If $a \mid b$ and $b \mid a$, then $a = \pm b$.
\item If $a \mid b$ and $a \mid c$, then $a \mid (b+c)$ and $a \mid (b-c)$.
\end{enumerate}
\item (1.9.a) Use the Euclidean algorithm to compute $\operatorname{gcd}(291,252)$ by hand.
\item (1.10.a) Use the extended Euclidean algorithm to find integers $u,v$ such that
\begin{displaymath}
291u + 252v = \operatorname{gcd}(291,252)
\end{displaymath}
\item (1.11.a-b) Let $a$ and $b$ be positive integers.
\begin{enumerate}
\item Suppose that there are integers $u$ and $v$ satisfying $au + bv = 1$. Prove
that $\operatorname{gcd}(a,b) = 1$.
\item Suppose that there are integers $u$ and $v$ satisfying $au + bv = 6$. Is
it necessarily true that $\operatorname{gcd}(a,b) = 6$? If not, give a
specific counterexample, and describe in general all the possible values
of $\operatorname{gcd}(a,b)$.
\end{enumerate}
\item (1.15) Let $m \geq 1$ be an integer and suppose that
\begin{displaymath}
a_1 \equiv a_2 \mod m \ \operatorname{and} \ b_1 \equiv b_2 \mod m.
\end{displaymath}
Prove that
\begin{displaymath}
a_1 \pm b_1 \equiv a_2 \pm b_2 \mod m \ \operatorname{and} \ a_1 \cdot b_1 \equiv
a_2 \cdot b_2 \mod m.
\end{displaymath}
\item (1.16.a-c) Write out the following tables for $\mathbb{Z}/m\mathbb{Z}$ and
$(\mathbb{Z}/m\mathbb{Z})^\ast$ as done in Fig. 1.4 and 1.5 in the textbook.
\begin{enumerate}
\item Make addition and multiplication tables for $\mathbb{Z}/3\mathbb{Z}$.
\item Make addition and multiplication tables for $\mathbb{Z}/6\mathbb{Z}$.
\item Make a multiplication table for the unit group $(\mathbb{Z}/9\mathbb{Z})^\ast$.
\end{enumerate}
\end{enumerate}
\end{document}