-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathkrona_lca_all.py
executable file
·74 lines (59 loc) · 2.92 KB
/
krona_lca_all.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#!/usr/bin/env python
import os
import sys
import pandas as pd
import argparse
import textwrap
def force_tax_number(kraken_output):
df = pd.read_csv(kraken_output, sep='\t', header=None)
target_rows = df[(df[2] == 0) & (df[0] == 'C')]
mapping = target_rows.iloc[:,-1]
mapping = mapping.to_frame()
mapping = mapping.replace(' |:|', '')
total_read_count = df.count()[0]
classified_no_taxid_count = target_rows.count()[0]
unclassified_read_count = df[df[0] == 'U'].count()[0]
print("--> Total read count: {:,}, Classified reads without taxid: {:,}, {:.1%}, Unclassified reads: {:,}, {:.1%}\n\n" .format(total_read_count, classified_no_taxid_count, classified_no_taxid_count/total_read_count, unclassified_read_count, unclassified_read_count/total_read_count))
corrected_dict = {}
for ir, row in mapping.itertuples():
accumulate = {}
row = row.replace(' |:|', '')
split_row = row.replace(' |:|', '').split()
for lca in split_row:
taxid, count = lca.split(":")
accumulate.setdefault(taxid, [])
accumulate[taxid].append(count)
highest_taxid = '0'
highest_value = 0
for taxid, value_list in accumulate.items():
value_sum = sum(list(map(int, value_list)))
if value_sum > highest_value and taxid != '0':
highest_taxid = taxid
highest_value = value_sum
corrected_dict[ir] = highest_taxid
corrected_df = pd.DataFrame.from_dict(corrected_dict, orient='index')
corrected_df = corrected_df.rename(columns={0: 2})
df.update(corrected_df)
krona_input = df[[1, 2]]
krona_input.to_csv("kronaInput.txt", sep='\t', index=False, header=False)
updated_df_count = df[(df[2] == 0) & (df[0] == 'C')].count()[0]
print("Classified reads without taxid after update: {}\n" .format(updated_df_count))
if __name__ == "__main__": # execute if directly access by the interpreter
parser = argparse.ArgumentParser(prog='PROG', formatter_class=argparse.RawDescriptionHelpFormatter, description=textwrap.dedent('''\
---------------------------------------------------------
2018-08-17
For use with Kraken2
Input: Kraken ouput file
Output: Tab delimited two column text file to be used by ktImportTaxonomy
Purpose:
Force a tax number for all classified reads, "C"
Usage: krona_lca_all.py -f kraken2_output_file.tex
Output will be: kronaInput.txt
Two column file will contain read header and taxid
'''), epilog='''---------------------------------------------------------''')
parser.add_argument('-f', '--file_in', action='store', dest='kraken_output', required=True, help='Required: Kraken output file (the big one)')
args = parser.parse_args()
print ("\nSET ARGUMENTS: ")
print (args)
print("")
force_tax_number(args.kraken_output)