-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_attribution.py
299 lines (267 loc) · 8.33 KB
/
evaluate_attribution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import hashlib
import json
import os
import random
from pathlib import Path
from typing import List, Tuple, Dict
import git
import numpy as np
import pandas as pd
import torch.cuda
from torch.utils.data import DataLoader
from sklearn.metrics import precision_recall_fscore_support
from tqdm import tqdm
from evaluation.common import CustomDataset
from attribution_eval.attribution_model import AttributionBaseModel
from attribution_eval.util import AttributionInstance, load_attribution_dataset_jsonl, load_attribution_dataset_csv
RANDOM_SEED=12345
random.seed(RANDOM_SEED)
DATA_DIR = {
'local': Path('../data'),
}
def predict(
model,
dataloader: DataLoader
):
"""Predict attribution for all instances in dataloader."""
if model.model is not None:
model.model.eval()
predictions = []
with tqdm(dataloader, unit='batch') as bar:
bar.set_description(f'Prediction')
for batch in bar:
predictions.extend(model.predict(batch))
return predictions
def evaluate(
predictions: List[int],
instances: List[AttributionInstance],
tune_threshold: bool = False
):
"""Evaluate F1 score"""
y_true = [
instance.label for instance in instances
]
if tune_threshold:
pass
scores = precision_recall_fscore_support(
y_true[:len(predictions)],
predictions,
labels=[0,1]
)
macro_f1 = np.mean(scores[2])
accuracy = np.mean(np.array(predictions) == np.array(y_true[:len(predictions)]))
# Compute TP, TN, FP, FN
# TP: predicted 1, true 1
# TN: predicted 0, true 0
# FP: predicted 1, true 0
# FN: predicted 0, true 1
tp = sum([1 for p, t in zip(predictions, y_true[:len(predictions)]) if p == 1 and t == 1])
tn = sum([1 for p, t in zip(predictions, y_true[:len(predictions)]) if p == 0 and t == 0])
fp = sum([1 for p, t in zip(predictions, y_true[:len(predictions)]) if p == 1 and t == 0])
fn = sum([1 for p, t in zip(predictions, y_true[:len(predictions)]) if p == 0 and t == 1])
balanced_accuracy = 0.5 * ((tp/(tp+fn)) + (tn/(tn+fp)))
return {
'F1': {
'macro': macro_f1,
'0': scores[2][0],
'1': scores[2][1]
},
'Accuracy': accuracy,
'Balanced Accuracy': balanced_accuracy
}
def make_output(
predicted_labels: List[int],
instances: List[AttributionInstance],
metrics: Dict,
model_name: str,
task_name: str,
concatenate_extraction_nodes: bool,
description: str
) -> Tuple[Dict, pd.DataFrame]:
"""Create output dict with config, scores and predictions."""
repo = git.Repo(search_parent_directories=True)
sha = repo.head.object.hexsha
config = {
'description': description,
'hash': None,
'model_name': model_name,
'task_name': task_name,
'commit_hash': sha,
'concatenate_extraction_nodes': concatenate_extraction_nodes
}
config_hash = hashlib.sha256(bytes(f"{dict(config)}", "utf-8")).hexdigest()
config['hash'] = config_hash[:4]
result = metrics
output = {
'config': config,
'result': result
}
table = {
'label': [],
'claim': [],
'evidence': [],
'task_name': [],
'example_id': [],
'annotation_idx': [],
'answer_statement_idx': [],
'answer_type': []
}
for predicted_label, instance in zip(predicted_labels, instances):
table['label'].append(predicted_label)
table['claim'].append(instance.claim)
table['evidence'].append(instance.evidence)
table['task_name'].append(instance.task_name)
table['example_id'].append(instance.example_id)
table['annotation_idx'].append(instance.annotation_idx)
table['answer_statement_idx'].append(instance.sentence_idx)
table['answer_type'].append(instance.answer_type)
table = pd.DataFrame(table)
return output, table
def main(
description: str,
model_name: str,
task_name: str,
partition: str,
dataset_is_csv: bool,
is_three_way_annotation: bool,
location: str,
batch_size: int,
concatenate_extraction_nodes: bool
):
"""
This function evaluates attribution models on "gold" data.
The annotated data for specific tasks is used to create attributable and
non-attributable instances.
:param model_name: The name of the model that evaluates attribution.
Available options: "true_nli", "attrscore".
:param partition: Which partition of the task data to use ("train", "dev"
or "test").
:param location: Where the script is running, 'local' or 'shared'
:param batch_size: The batch size for the model
:param concatenate_extraction_nodes: If True, all extraction nodes for an
instance are concatenated and attribution is predicted once. If False,
attribution is predicted separately for each extraction node and the max
attribution score is used as the final score.
"""
# Load data
dataset_dir_path = DATA_DIR[location]
if not dataset_is_csv:
dataset_path = dataset_dir_path / 'datasets' / f'{task_name}-{partition}.jsonl'
attribution_instances = load_attribution_dataset_jsonl(
dataset_path
)
else:
dataset_path = dataset_dir_path / 'datasets' / f'{task_name}-{partition}.csv'
attribution_instances = load_attribution_dataset_csv(
dataset_path,
is_three_way_annotation=is_three_way_annotation
)
dataset = CustomDataset(attribution_instances)
# Load model
print(f'Loading model {model_name}')
model = AttributionBaseModel.load_model(
model_name,
predict_max_in_batch=not(concatenate_extraction_nodes)
)
if torch.cuda.is_available() and model.model is not None:
device = torch.device('cuda:0')
model = model.to(device)
# Create dataloader
dataloader = DataLoader(
dataset,
collate_fn=model.collate_fn,
batch_size=batch_size,
shuffle=False
)
# Evaluate model
predictions = predict(
model,
dataloader
)
print('Evaluating predictions')
result = evaluate(
predictions,
attribution_instances
)
print(json.dumps(result, indent=4))
# Output result
output_dict, output_table = make_output(
predictions,
attribution_instances,
result['F1'],
model_name,
attribution_instances[0].task_name,
concatenate_extraction_nodes,
description
)
print(f'Saving output with hash {output_dict["config"]["hash"]}')
out_dir_path = DATA_DIR[location] / 'results' / f'{output_dict["config"]["hash"]}'
os.mkdir(out_dir_path)
with open(out_dir_path / 'results.json', 'w') as f:
json.dump(output_dict, f, indent=4)
output_table.to_csv(out_dir_path / 'predictions.csv')
print('Done')
if __name__ == '__main__':
import argparse
parser = argparse.ArgumentParser()
parser.add_argument(
'--description',
type=str,
default=''
)
parser.add_argument(
'--model_name',
type=str,
default='true_nli'
)
parser.add_argument(
'--task_name',
type=str,
default='qasper'
)
parser.add_argument(
'--partition',
type=str,
default='dev'
)
parser.add_argument(
'--is_csv',
action='store_true'
)
parser.add_argument(
'--location',
type=str,
default='shared'
)
parser.add_argument(
'--is_three_way_annotation',
action='store_true'
)
parser.add_argument(
'--batch_size',
type=int,
default=1
)
parser.add_argument(
'--no_concatenation',
action='store_true'
)
parser.add_argument(
'--remote_debug',
action='store_true'
)
args = parser.parse_args()
if args.remote_debug:
import pydevd_pycharm
pydevd_pycharm.settrace('10.167.11.14', port=3851, stdoutToServer=True, stderrToServer=True)
main(
args.description,
args.model_name,
args.task_name,
args.partition,
args.is_csv,
args.is_three_way_annotation,
args.location,
args.batch_size,
not args.no_concatenation
)