-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsetup_utils.py
323 lines (259 loc) · 11.6 KB
/
setup_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
import argparse
import torch
import os
import re
import random
import json
import pandas as pd
import numpy as np
from datasets import Dataset, load_dataset
from transformers import AutoTokenizer
from sklearn.metrics import average_precision_score, f1_score, accuracy_score, classification_report
MODEL_SEED = 0
os.environ["WANDB_DISABLED"] = "true"
def str2bool(v):
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def get_lang_star_dict(args):
task_name = args.task
if task_name == 'amazon_reviews_multi_zh':
lang_star_dict = {0: '1星', 1: '2星', 2: '3星', 3: '4星', 4: '5星'}
elif task_name == 'amazon_reviews_multi_de':
lang_star_dict = {0: '1 stern', 1: '2 sterne', 2: '3 sterne', 3: '4 sterne', 4: '5 sterne'}
elif task_name == 'amazon_reviews_multi_fr':
lang_star_dict = {0: '1 étoile', 1: '2 étoiles', 2: '3 étoiles', 3: '4 étoiles', 4: '5 étoiles'}
elif task_name == 'amazon_reviews_multi_ja':
lang_star_dict = {0: '一つ星', 1: '二つ星', 2: '三つ星', 3: '四つ星', 4: '五つ星'}
elif task_name == 'amazon_reviews_multi_es':
lang_star_dict = {0: '1 estrella', 1: '2 estrellas', 2: '3 estrellas', 3: '4 estrellas', 4: '5 estrellas'}
elif task_name == 'amazon_reviews_multi_en':
lang_star_dict = {0: '1 star', 1: '2 stars', 2: '3 stars', 3: '4 stars', 4: '5 stars'}
return lang_star_dict
def fix_amzn(args):
lang_star_dict = get_lang_star_dict(args)
ds = args.task
ds = load_dataset(f'SetFit/{ds}')
ds = ds.rename_column("label_text", "str_label_text")
for split, dset in ds.items():
label_text =[lang_star_dict[i] for i in dset['label']]
dset = dset.add_column('label_text', label_text)
ds[split] = dset
ds = ds.rename_column("label", "labels")
train_df = ds['train'].to_pandas()
test_ds = ds['test']
val_ds = ds['validation']
return train_df, test_ds, val_ds
def evaluation(predictions, args):
if args.mode in ['ROBERTA_FREEZE', 'ROBERTA_FULL']:
model_outputs = predictions.predictions
targets = predictions.label_ids
outputs = np.argmax(model_outputs, axis=-1)
logit_outputs = 0
if len(model_outputs.shape) == 2:
logit_outputs = model_outputs[:, 1]
else:
logit_outputs, outputs, targets = predictions
if len(set(targets)) > 2:
f1 = f1_score(targets, outputs, average='macro')*100
else:
f1 = f1_score(targets, outputs)*100
if type(logit_outputs) == int:
avg_pre = 0
else:
try:
avg_pre = average_precision_score(targets, logit_outputs)*100
except ValueError:
avg_pre = 0
print(classification_report(targets, outputs))
print("Average precision = {}".format(avg_pre))
print()
print('F1 = {}'.format(f1))
return avg_pre, f1
def custom_evaluation(predictions):
logit_outputs, outputs, targets = predictions
if len(set(targets)) > 2:
binary = False
f1_mac = f1_score(targets, outputs, average='macro')*100
f1_mic = f1_score(targets, outputs, average='micro')*100
else:
binary = True
f1_bin = f1_score(targets, outputs)*100
try:
avg_pre = average_precision_score(targets, logit_outputs)*100
except ValueError:
avg_pre = 0
acc = accuracy_score(targets, outputs)*100
print(classification_report(targets, outputs))
if len(set(targets)) > 2:
return f1_mac, f1_mic, acc, binary
else:
return f1_bin, avg_pre, acc, binary
def get_eval_dict(args, train_predictions, test_predictions, custom=False):
if not custom:
print('TRAINING EVALUATION FOR {} ON SEED NUMBER = {}'.format(args.mode, args.seed))
train_avg_pre, train_f1 = evaluation(train_predictions, args)
print('TESTING EVALUATION FOR {} ON SEED NUMBER = {}'.format(args.mode, args.seed))
test_avg_pre, test_f1 = evaluation(test_predictions, args)
eval_dict = {'train_avg_pre': train_avg_pre,
'train_f1': train_f1,
'test_avg_pre': test_avg_pre,
'test_f1': test_f1}
else:
print('Training evalutation')
f1_mac, f1_mic, acc, binary = custom_evaluation(train_predictions)
if binary:
train_bin = f1_mac
train_ap = f1_mic
train_acc = acc
print('Testing evluation')
t_f1_mac, t_f1_mic, t_acc, _ = custom_evaluation(test_predictions)
test_bin = t_f1_mac
test_ap = t_f1_mic
test_acc = t_acc
eval_dict = {'train_ap': train_ap,
'train_f1_binary': train_bin,
'train_accuracy': train_acc,
'test_ap': test_ap,
'test_f1_binary': test_bin,
'test_accuracy': test_acc}
else:
train_mac = f1_mac
train_mic = f1_mic
train_acc = acc
print('Testing evluation')
t_f1_mac, t_f1_mic, t_acc, _ = custom_evaluation(test_predictions)
eval_dict = {'train_f1_macro': train_mac,
'train_f1_micro': train_mic,
'train_accuracy': train_acc,
'test_f1_macro': t_f1_mac,
'test_f1_micro': t_f1_mic,
'test_accuracy': t_acc}
return eval_dict
def write_eval_jsons(eval_dict, args, step, balance):
folder = 'out_jsons/{}/{}/{}/{}/{}/'.format(args.task, args.mode, balance, args.seed, step)
if not os.path.exists(folder):
os.makedirs(folder)
baselines = ['KNN', 'LOG_REG', 'PROBE', 'ROBERTA_FREEZE', 'ROBERTA_FULL', 'SETFIT', 'SETFIT_LITE']
lagonn_configs = ['LABEL', 'LABDIST', 'ALL', 'TEXT', 'BOTH', 'DISTANCE', 'ONLY_LABEL']
if args.mode in baselines:
config = 'results.json'
else:
if args.lagonnconfig in lagonn_configs:
if args.dist_precision != 'None':
config = '{}!{}-results.json'.format(args.lagonnconfig, args.dist_precision)
else:
config = '{}!results.json'.format(args.lagonnconfig)
if args.num_neighbors != 1:
config = f'{args.num_neighbors}-{config}'
writefile = folder + config
#try:
# os.remove(writefile)
#except OSError:
# pass
with open(writefile, 'a') as f:
f.write(json.dumps(eval_dict)+'\n')
def fix_liar(args, split):
st_modes = ['LAGONN_CHEAP', 'LAGONN', 'LAGONN_LITE', 'LAGONN_EXP',
'KNN', 'LOG_REG', 'SETFIT', 'PROBE', 'SETFIT_LITE']
df = pd.read_csv('dataframes_with_val/{}_need_fix_{}.csv'.format('liar', split)).dropna()
if args.mode in st_modes:
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/{}'.format(args.st_model))
elif args.mode in ['ROBERTA_FREEZE', 'ROBERTA_FULL']:
tokenizer = AutoTokenizer.from_pretrained(args.transformer_clf)
outtext = []
for txt, contxt in zip(df.text.to_list(), df.context.to_list()):
outtxt = '{} {} {}'.format(txt, tokenizer.sep_token, contxt).strip()
outtxt = re.sub(' +', ' ', outtxt)
outtext.append(outtxt)
outdf = df[['label_text', 'labels']].copy(deep=True)
outdf['text'] = pd.Series(outtext).values
return outdf
def seed_everything(seed):
random.seed(seed)
os.environ['PYTHONHASHSEED'] = str(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.backends.cudnn.deterministic = True
def predict_with_sklearn(X, y, clf):
y_logit = clf.predict_proba(X)
if len(y_logit.shape) == 2:
y_logit = y_logit[:, 1]
y_pred = clf.predict(X)
predictions = (y_logit, y_pred, y)
return predictions
def ds_for_orig_liar(args):
st_modes = ['LAGONN_CHEAP', 'LAGONN', 'LAGONN_LITE', 'LAGONN_EXP',
'KNN', 'LOG_REG', 'SETFIT', 'PROBE', 'SETFIT_LITE']
ds = load_dataset('liar')
ds = ds.rename_column("label", "labels")
if args.mode in st_modes:
tokenizer = AutoTokenizer.from_pretrained('sentence-transformers/{}'.format(args.st_model))
elif args.mode in ['ROBERTA_FREEZE', 'ROBERTA_FULL']:
tokenizer = AutoTokenizer.from_pretrained(args.transformer_clf)
label_dict = {0: 'false',
1: 'half-true',
2: 'mostly-true',
3: 'true',
4: 'barely-true',
5: 'pants-fire'}
outdses = [None, None, None]
for split, dataset in ds.items():
text, label_text = [], []
for txt, contxt, lab in zip(dataset['statement'], dataset['context'], dataset['labels']):
outtxt = '{} {} {}'.format(txt, tokenizer.sep_token, contxt).strip()
outtxt = re.sub(' +', ' ', outtxt)
text.append(outtxt)
label_text.append(label_dict[lab])
df = pd.DataFrame({'text': text, 'labels': dataset['labels'], 'label_text': label_text})
if split in ['train']:
outdses[0] = df
elif split in ['test']:
outdses[1] = Dataset.from_pandas(df)
elif split in ['validation']:
outdses[2] = Dataset.from_pandas(df)
return outdses[0], outdses[1], outdses[2]
def ds_for_general(ds):
ds = load_dataset(f'SetFit/{ds}')
ds = ds.rename_column("label", "labels")
train_df = ds['train'].to_pandas()
if 'valdation' not in ds:
split_df = ds['test'].to_pandas()
val_df = split_df.sample(frac=.3, random_state=42)
test_ds = Dataset.from_pandas(split_df.drop(val_df.index))
val_ds = Dataset.from_pandas(val_df)
else:
test_ds = ds['test']
val_ds = ds['valdation']
return train_df, test_ds, val_ds
def sample_df_convert_ds(train_df, balance, step, args):
bi_ratio_dict = {'extreme': (0.98, 0.02), 'imbalanced': (0.9, 0.1), 'moderate': (0.75, 0.25)}
tri_ratio_dict = {'extreme': (0.02, 0.95, 0.03), 'imbalanced': (0.05, 0.8, 0.15), 'moderate': (0.10, 0.65, 0.25)}
initial = 100
num_labs = len(set(train_df['labels']))
sample_size = initial*step
if balance not in ['balanced']:
sample = pd.DataFrame()
if args.task in ['hate_speech_offensive']:
ratios = tri_ratio_dict[balance]
else:
ratios = bi_ratio_dict[balance]
for idx, ratio in enumerate(ratios):
samp_size_ratio = sample_size*ratio
try:
lab_sample = train_df[train_df['labels']==idx].sample(n=int(samp_size_ratio), random_state=args.seed)
except ValueError: #sample with replacement when there are no other samples
lab_sample = train_df[train_df['labels']==idx].sample(n=int(samp_size_ratio), replace=True, random_state=args.seed)
sample = pd.concat([sample, lab_sample], ignore_index=True)
elif balance in ['balanced']:
try:
sample = train_df.groupby('labels').apply(lambda x: x.sample(n=int(sample_size/num_labs), random_state=args.seed))
except ValueError: #sample with replacement when there are no other samples
sample = train_df.groupby('labels').apply(lambda x: x.sample(n=int(sample_size/num_labs), replace=True, random_state=args.seed))
return Dataset.from_pandas(sample).shuffle(seed=args.seed)