-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluation.py
878 lines (747 loc) · 36.4 KB
/
evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
import argparse
import os
import json
import time
import configparser
import subprocess
from numpy import average
from agent import WrapperFunction
import auto_puppeteer
import logging, logging.config
try:
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.lines as lines
import matplotlib.ticker as ticker
import pandas as pd
except ModuleNotFoundError:
pass
from math import ceil
from puppeteering.auto_puppeteer import AutoPuppeteerPhase, _run_pintool, _ipc_server_listen
from puppeteering.agent_connector import AgentConnector
from puppeteering.types import *
from puppeteering.poi.base import Poi
from puppeteering.util import host_address_to_str, parse_bootstrap_list_file
MAIN_PATH = os.path.dirname(os.path.abspath(__file__))
MAIN_CONFIG_FILE = os.path.join(MAIN_PATH, "auto_puppeteer.ini")
ANALYSIS_PACKAGE_DIR = os.path.join("..", "analysis-packages")
DELAY_NATIVE_SNAPSHOT = "AgentRunningNoPin"
BOTNETS = {
"SALITY": {
"name": "Sality",
"analysis_package": os.path.join(ANALYSIS_PACKAGE_DIR, "sality"),
"local_botnet": "sality_large",
"delay_measure_time": (10*60, 17*60),
"filter": "udp && !dns && !ssdp && !dhcpv6 && ip.src == 99.99.0.99 && !icmp && !(udp.port == 3702)",
},
"ZEROACCESS": {
"name": "ZeroAccess",
"analysis_package": os.path.join(ANALYSIS_PACKAGE_DIR, "zeroaccess"),
"local_botnet": "zeroaccess_large",
"delay_measure_time": (10*60, 10*60),
"filter": "udp.port == 16471 && !icmp",
"break": (40, 110, 128),
"height_ratio": [1, 1],
},
"NUGACHE": {
"name": "Nugache",
"analysis_package": os.path.join(ANALYSIS_PACKAGE_DIR, "nugache"),
"local_botnet": "nugache_large",
"delay_measure_time": (60*60, 60*60),
"filter": "tcp.port == 8 && !tcp.analysis.retransmission && !icmp",
},
"KELIHOS": {
"name": "Kelihos",
"analysis_package": os.path.join(ANALYSIS_PACKAGE_DIR, "kelihos"),
"local_botnet": "kelihos_large",
"delay_measure_time": (20*60, 20*60),
"filter": "tcp.port == 80 && !(tcp.analysis.retransmission) && !icmp",
"break": (9, 17, 20),
"height_ratio": [1, 1],
}
}
def log_with_box(logger, msg: str, before: int=2, after: int=2) -> None:
for _ in range(before):
logger.info('#'*len(msg))
logger.info(msg)
for _ in range(after):
logger.info('#'*len(msg))
def run_botnet(output_folder: str, mode: str, analysis_package: str, local_botnet: str):
config = configparser.ConfigParser()
config.read([MAIN_CONFIG_FILE, os.path.join(analysis_package, "package.ini")])
args = argparse.Namespace(
analysis_package=analysis_package,
output_folder=output_folder
)
config_class = auto_puppeteer.parse_config(config, args)
f = AutoPuppeteerPhase.SETUP_PUPPET
t = AutoPuppeteerPhase.CRAWL
if mode == "pois1":
config_class.crawl_n_times = 0
config_class.confidence_score_threshold = -1.0
t = AutoPuppeteerPhase.VERIFY_RETURNS
elif mode == "pois2":
config_class.crawl_n_times = 0
config_class.confidence_score_threshold = -1.0
f = AutoPuppeteerPhase.CRAWL
local_botnet = "dummy"
elif mode == "crawling":
config_class.dump_processes = False
config_class.poi_extractor_memory_pattern = False
else: raise RuntimeError("Unknown mode.")
botnet_vms_string = config["local_botnets"].get(local_botnet)
botnet_vms_int = list()
for a in botnet_vms_string.split(","):
a_split = a.split("-")
if len(a_split) == 1:
botnet_vms_int.append(int(a))
for b in range(int(a_split[0]), int(a_split[1])+1):
botnet_vms_int.append(b)
running_snapshot = config["local_botnets"].get(local_botnet + "_running")
lb_ips_file = os.path.join(
os.path.dirname(MAIN_CONFIG_FILE),
config["local_botnets"].get(local_botnet + "_ips")
)
ap = auto_puppeteer.LocalBotnetAutoPuppeteer(
config_class, botnet_vms_int, running_snapshot, lb_ips_file,
config["puppet_vm"].get("host"),
config["puppet_vm"].get("node"),
config["puppet_vm"].get("username"),
config["puppet_vm"].get("password")
)
try:
ap.puppeteer(f=f, to=t)
except RuntimeError as err:
logger.error(f"Error while auto puppeteering...")
raise
def collect_data1(botnet: str, args: argparse.Namespace):
logger = logging.getLogger("evaluation.collect_data")
config = BOTNETS[botnet]
analysis_package = os.path.join(MAIN_PATH, config["analysis_package"])
output_folder_base = os.path.join(args.working_dir, botnet, "collect_data")
local_botnet = config["local_botnet"]
if args.do_pois:
log_with_box(logger, f"##### Doing first POI run #####", before=1, after=1)
run_botnet(os.path.join(output_folder_base, "pois"), "pois1", analysis_package, local_botnet)
if args.do_crawling:
log_with_box(logger, f"##### Doing crawling run #####", before=1, after=1)
run_botnet(os.path.join(output_folder_base, f"crawling"), "crawling", analysis_package, local_botnet)
def collect_data2(botnet: str, args: argparse.Namespace):
logger = logging.getLogger("evaluation.collect_data")
config = BOTNETS[botnet]
analysis_package = os.path.join(MAIN_PATH, config["analysis_package"])
output_folder_base = os.path.join(args.working_dir, botnet, "collect_data")
local_botnet = config["local_botnet"]
log_with_box(logger, f"##### Doing second POI run #####", before=1, after=1)
run_botnet(os.path.join(output_folder_base, "pois"), "pois2", analysis_package, local_botnet)
def poi_to_group(poi):
if poi["poi_type"] == "PORT":
return "PORT"
if poi['extractor'] == "NaivePoiExtractor":
split_details = poi['details'].split(";")
if split_details[0].startswith("REG"):
group = "Register (Standalone)"
# group = split_details[0].replace("_", "-")
elif "MEM" in split_details[0]:
group = "Memory (Standalone)"
# elif split_details[0] == "MEM_R":
# group = "Memory Read"
# elif split_details[0] == "MEM_W":
# group = "Memory Write"
else: assert(False)
elif poi['extractor'] == "MemoryPatternPoiExtractor":
group = "Memory (Contiguous)"
# if "POI operation:w" in poi["details"]:
# group = "Pattern Write"
# elif "POI operation:r" in poi["details"]:
# group = "Pattern Read"
# else:
# raise RuntimeError(poi)
else: assert(False)
return group
def get_confidence_class(confidence_score):
if confidence_score is None:
return -2
for i in range(0, 10):
if i/10 <= confidence_score <= (i+1)/10:
return i
return -1
def load_pois(botnet: str, args: argparse.Namespace):
pois_file = os.path.join(args.working_dir, botnet, "collect_data", "pois", "pois.json")
with open(pois_file, 'r') as f:
pois = json.load(f)
for poi in pois:
poi["Botnet"] = BOTNETS[botnet]["name"]
poi["Type"] = poi_to_group(poi)
poi["Confidence Class"] = get_confidence_class(poi["confidence_score"])
poi["Number of POIs"] = 1
return pois
def load_results(botnet: str, i: int, args: argparse.Namespace):
results_file = os.path.join(args.working_dir, botnet, "collect_data", "crawling", f"results_{i}.json")
with open(results_file, 'r') as f:
results = json.load(f)
return results
def load_poi_to_extracted_ips(botnet: str, args: argparse.Namespace):
pass
def get_botnet_peers(botnet: str) -> Set[str]:
config = BOTNETS[botnet]
analysis_package = os.path.join(MAIN_PATH, config["analysis_package"])
local_botnet = config["local_botnet"]
config = configparser.ConfigParser()
config.read([MAIN_CONFIG_FILE, os.path.join(analysis_package, "package.ini")])
config_args = argparse.Namespace(
analysis_package=analysis_package,
output_folder=""
)
config_class = auto_puppeteer.parse_config(config, config_args, connect=False)
botnet_peers_file = os.path.join(os.path.dirname(MAIN_CONFIG_FILE), config["local_botnets"].get(f"{local_botnet}_ips"))
botnet_peers = set(map(host_address_to_str, parse_bootstrap_list_file(botnet_peers_file))) \
| set(map(host_address_to_str, config_class.crawl_ignore_bs_exceptions))
return botnet_peers
def get_bootstrap_list(botnet: str) -> Set[str]:
config = BOTNETS[botnet]
analysis_package = os.path.join(MAIN_PATH, config["analysis_package"])
config = configparser.ConfigParser()
config.read([MAIN_CONFIG_FILE, os.path.join(analysis_package, "package.ini")])
config_args = argparse.Namespace(
analysis_package=analysis_package,
output_folder=""
)
config_class = auto_puppeteer.parse_config(config, config_args, connect=False)
bootstrap_list = set(map(host_address_to_str, config_class.bootstrap_list))
return bootstrap_list
def iter_results(botnet: str, args: argparse.Namespace) -> Generator[Dict, None, None]:
for i in range(0, 100):
yield load_results(botnet, i, args)
def load_all_results(botnet: str, args: argparse.Namespace) -> List[Dict]:
return list(iter_results(botnet, args))
def graph_data1(logger, botnets: List[str], args: argparse.Namespace):
log_with_box(logger, "graph_data1", before=1, after=1)
######### xy plot of POI confidence score and extraction quality
resulting_data = []
for botnet in botnets:
bootstrap_list = get_bootstrap_list(botnet)
botnet_peers = get_botnet_peers(botnet)
poi_data: Dict[str, Dict] = dict()
for res in iter_results(botnet, args):
for ip,extractors in res["new_peers_raw"].items():
for _,pois in extractors.items():
for poi in pois:
poi_string = poi["poi_type"] + ";" + str(poi["address"]) + ";" + poi["extractor"] + ";" + poi["details"] + ";" + str(poi["confidence_score"])
poi_data.setdefault(poi_string, {
"Confidence Score": poi["confidence_score"],
"Botnet": BOTNETS[botnet]["name"],
"ips": set(),
"Number of POIs": 1
})["ips"].add(ip)
total_pois = 0
overestimated_pois = 0
for poi_string,data in poi_data.items():
correct_ips = data["ips"] & (bootstrap_list | botnet_peers)
data["Correctness"] = len(correct_ips) / len(data["ips"])
resulting_data.append(data)
total_pois += 1
if data["Correctness"] < data["Confidence Score"]:
overestimated_pois += 1
logger.info(f"[{botnet}] Total POIs: {total_pois} Overestimated POIs: {overestimated_pois}")
agg_funcs = {"Number of POIs": "sum"}
df = pd.DataFrame(resulting_data)
df = df.groupby(["Confidence Score", "Correctness", "Botnet"]).aggregate(agg_funcs).sort_values("Botnet", ascending=False)
df = df.sort_values("Botnet", ascending=False)
facet_grid = sns.relplot(x="Confidence Score", y="Correctness", hue="Botnet", style="Botnet", size="Number of POIs", sizes=(50,200), data=df, alpha=0.6, clip_on=False)
facet_grid.fig.set_size_inches(4.5, 4.5)
ax = facet_grid.axes[0,0]
line = lines.Line2D([0, 1], [0, 1], lw=1, color="red", ls="--")
ax.add_line(line)
line = lines.Line2D([0.8, 0.8], [0, 2], lw=1, color="green", ls=":")
ax.add_line(line)
ax.set_xlim(left=0, right=1.05)
ax.set_ylim(bottom=0, top=1.05)
h,l = ax.get_legend_handles_labels()
lgd = facet_grid.fig.legend(h[1:len(botnets)+1], l[1:len(botnets)+1], loc=10, ncol=10, bbox_to_anchor=(0.50, 0), frameon=True, columnspacing=0.3)
facet_grid.legend.remove()
plt.tight_layout()
dest_file = os.path.join(args.working_dir, "graph", "poi_correctness.pdf")
try:
os.makedirs(os.path.dirname(dest_file))
except FileExistsError:
pass
plt.savefig(dest_file, bbox_extra_artists=(lgd,), bbox_inches="tight")
def graph_data2(logger, botnets: List[str], args: argparse.Namespace):
plt.rcParams.update({'font.size': 14})
log_with_box(logger, "graph_data2", before=1, after=1)
last_flag = False
for botnet in botnets + ["LAST"]:
if botnet == "LAST":
last_flag = True
botnet = "ZEROACCESS"
pois = load_pois(botnet, args)
# pois = list(filter(lambda x: x["confidence_score"] is not None, pois))
ip_pois = list(filter(lambda x: x["poi_type"] == "IP", pois))
# see: https://gist.github.com/pfandzelter/0ae861f0dee1fb4fd1d11344e3f85c9e
if "break" in BOTNETS[botnet]:
begin,end,end2 = BOTNETS[botnet]["break"]
top = 1
bottom = begin/(end2-end)
f, (ax1, ax2) = plt.subplots(ncols=1, nrows=2, sharex=True, figsize=(4.2, 4.2), gridspec_kw={'height_ratios': [top, bottom]})
else:
f, (ax1) = plt.subplots(ncols=1, nrows=1, sharex=True, figsize=(4.2, 4.2))
for i in range(10):
for t in ["Register", "Memory", "Pattern"]:
ip_pois.append({
"Type": t,
"Confidence Class": i,
"Botnet": BOTNETS[botnet]["name"],
"Number of POIs": 0
})
df = pd.DataFrame(data=ip_pois).sort_values("Botnet", ascending=False)
agg_funcs = {"Number of POIs": "sum"}
df = df.groupby(["Type", "Confidence Class", "Botnet"]).aggregate(agg_funcs)
df.reset_index(inplace=True)
ax1 = sns.barplot(x="Confidence Class", y="Number of POIs", hue="Type", hue_order=["Register (Standalone)", "Memory (Standalone)", "Memory (Contiguous)"], data=df, ax=ax1)
if "break" in BOTNETS[botnet]:
ax2 = sns.barplot(x="Confidence Class", y="Number of POIs", hue="Type", hue_order=["Register (Standalone)", "Memory (Standalone)", "Memory (Contiguous)"], data=df, ax=ax2)
if "break" in BOTNETS[botnet]:
begin,end,end2 = BOTNETS[botnet]["break"]
ax1.get_legend().remove()
ax2.get_legend().remove()
ax1.get_xaxis().set_visible(False)
ax1.set_ylim(bottom=end, top=end2)
ax2.set_ylim(0, top=begin)
ax1.set_ylabel(" ")
ax2.set_ylabel("")
f.text(0.03, 0.55, "Number of POIs", va="center", rotation="vertical")
d = .01 # how big to make the diagonal lines in axes coordinates
# arguments to pass to plot, just so we don't keep repeating them
kwargs = dict(transform=ax1.transAxes, color='k', clip_on=False)
ax1.plot((-d, +d), (-d, +d), **kwargs) # top-left diagonal
ax1.plot((1 - d, 1 + d), (-d, +d), **kwargs) # top-right diagonal
kwargs.update(transform=ax2.transAxes) # switch to the bottom axes
ax2.plot((-d, +d), (1 - d, 1 + d), **kwargs) # bottom-left diagonal
ax2.plot((1 - d, 1 + d), (1 - d, 1 + d), **kwargs) # bottom-right diagonal
# ax1.get_legend().remove()
# ax2.get_legend().remove()
if ax2.get_legend() is not None:
ax2.get_legend().remove()
if ax1.get_legend() is not None:
ax1.get_legend().remove()
# fd = sns.catplot(x="Confidence Class", y="Number of POIs", hue="Type", col="Botnet", kind="bar", data=df, legend=False, sharey=False, hue_order=["Register", "Memory", "Pattern"])
# fd.fig.set_size_inches(13, 3.5)
# handles = fd._legend_data.values()
# labels = fd._legend_data.keys()
if last_flag:
if "break" in BOTNETS[botnet]:
lgd = ax2.legend(loc=10, ncol=10, bbox_to_anchor=(0.42, -0.7), columnspacing=0.4)
else:
lgd = ax1.legend(loc=10, ncol=10, bbox_to_anchor=(0.42, -0.5), columnspacing=0.4)
plt.tight_layout()
# for i in range(0, len(botnets)):
# ax = fd.axes[0, i]
# ax.set_title(ax.get_title().split(" = ")[1])
# for axis in [ax.xaxis, ax.yaxis]:
# axis.set_major_locator(ticker.MaxNLocator(integer=True))
dest_file = os.path.join(args.working_dir, "graph", f"pois_plot_{botnet}.pdf")
try:
os.makedirs(os.path.dirname(dest_file))
except FileExistsError:
pass
if last_flag:
dest_file = os.path.join(args.working_dir, "graph", f"pois_plot_LEGEND.pdf")
plt.savefig(dest_file, bbox_extra_artists=(lgd,), bbox_inches="tight")
else:
plt.savefig(dest_file, bbox_inches="tight")
def results_confidence_score_threshold(data, threshold=0.8, single_cycle=False):
if single_cycle:
data = [data]
for crawl_cycle in data:
crawl_cycle["new_peers_raw"] = {
ip: {
extractor: list(filter(lambda x: x["confidence_score"] >= threshold, pois))
for extractor,pois in extractors.items()
}
for ip,extractors in crawl_cycle["new_peers_raw"].items()
}
for ip in list(crawl_cycle["new_peers_raw"].keys()):
pois_found = 0
for pois in crawl_cycle["new_peers_raw"][ip].values():
pois_found += len(pois)
if pois_found == 0:
del crawl_cycle["new_peers_raw"][ip]
def graph_data3(logger, botnets: List[str], args: argparse.Namespace):
log_with_box(logger, "graph_data3", before=1, after=1)
results = []
results2 = []
for botnet in botnets:
logger.info(f"Obtaining data for {botnet}...")
bootstrap_list = get_bootstrap_list(botnet)
botnet_peers = get_botnet_peers(botnet)
scores = {}
for j,data in enumerate(iter_results(botnet, args)):
print(str(j) + ' ', end='', flush=True)
for i in range(0, 101):
threshold = i/100
results_confidence_score_threshold(data, threshold=threshold, single_cycle=True)
extracted_peers = data["new_peers_raw"].keys()
extracted_peers = set(extracted_peers)
if len(extracted_peers) == 0:
continue
correct_peers = extracted_peers & (bootstrap_list | botnet_peers)
scores.setdefault(i, []).append(len(correct_peers)/len(extracted_peers))
results.append({
"Botnet": BOTNETS[botnet]["name"],
"Confidence score threshold": threshold,
"Correctness": len(correct_peers)/len(extracted_peers)
})
results2.append({
"Botnet": BOTNETS[botnet]["name"],
"Type": "Extracted",
"Confidence score threshold": threshold,
"Number": len(extracted_peers)
})
results2.append({
"Botnet": BOTNETS[botnet]["name"],
"Type": "Correct",
"Confidence score threshold": threshold,
"Number": len(correct_peers)
})
print("")
scores = [
(i, np.average(vals))
for i,vals in scores.items()
]
logger.info(f"Correctnesses: {scores}")
line = lines.Line2D([0.8, 0.8], [0, 1000], lw=1, color="gray")
df = pd.DataFrame(results).sort_values("Botnet", ascending=False)
plt.figure(figsize=(4.5, 4.5))
ax = sns.lineplot(x="Confidence score threshold", y="Correctness", hue="Botnet", data=df)
ax.set_xlim(left=0, right=1.05)
ax.set_ylim(bottom=0, top=1.05)
ax.add_line(line)
ax.get_legend().remove()
lgd = ax.legend(loc=10, ncol=10, bbox_to_anchor=(0.45, -0.2))
plt.tight_layout()
dest_file = os.path.join(args.working_dir, "graph", "threshold_analysis.pdf")
try:
os.makedirs(os.path.dirname(dest_file))
except FileExistsError:
pass
plt.savefig(dest_file, bbox_extra_artists=(lgd,), bbox_inches="tight")
df = pd.DataFrame(results2).sort_values("Botnet", ascending=False)
fg = sns.relplot(x="Confidence score threshold", y="Number", hue="Type", col="Botnet", col_wrap=2, data=df, kind="line", facet_kws={'sharey': False, 'sharex': True})
fg.fig.set_size_inches(4.5, 4.5)
for ax in fg.axes:
line = lines.Line2D([0.8, 0.8], [0, 1000], lw=1, color="gray")
ax.add_line(line)
ax.set_title(ax.get_title().split(" = ")[1])
ax.set_xlim(left=0)
ax.set_ylim(bottom=0)
if "Sality" in ax.get_title():
ax.set_ylim(bottom=740, top=744)
if "Nugache" in ax.get_title():
ax.set_ylim(bottom=11, top=14.5)
lgd = fg.fig.legend(loc=10, ncol=10, bbox_to_anchor=(0.5, 0), frameon=True)
fg.legend.remove()
# ax = sns.lineplot(x="Confidence score threshold", y="Extracted Peers", hue="Botnet", data=df)
# ax.get_legend().remove()
# lgd = ax.legend(loc=10, ncol=10, bbox_to_anchor=(0.52, -0.2))
# # lgd.set_bbox_to_anchor([0.99,0.9])
# # lgd.set_frame_on(True)
# # lgd._loc = 2
plt.tight_layout()
dest_file = os.path.join(args.working_dir, "graph", "threshold_analysis2.pdf")
try:
os.makedirs(os.path.dirname(dest_file))
except FileExistsError:
pass
plt.savefig(dest_file, bbox_extra_artists=(lgd,), bbox_inches="tight")
def graph_data(botnets: List[str], args: argparse.Namespace):
logger = logging.getLogger("evaluation.graph_data")
sns.set_style("whitegrid")
if args.do_poi_correctness:
graph_data1(logger, botnets, args)
if args.do_threshold:
graph_data3(logger, botnets, args)
if args.do_pois:
graph_data2(logger, botnets, args)
if args.show:
plt.show()
def log_stat(logger, name: str, values, confidence_scores, latex_name: str=None) -> Tuple:
confidence_score_text = ""
if confidence_scores is not None:
confidence_score_text = " Avg. Confidence Score: "
if len(confidence_scores) == 0:
confidence_score_text += "n/a"
else:
confidence_score_text += f"{np.average(confidence_scores)} (n={len(confidence_scores)}, sigma={np.std(confidence_scores)})"
logger.info(f"'{name}': {np.average(values)} (n={len(values)}, sigma={np.std(values)}){confidence_score_text}")
cs_avg = None
cs_std = None
if len(confidence_scores) > 0:
cs_avg = np.average(confidence_scores)
cs_std = np.std(confidence_scores)
return (np.average(values), np.std(values), cs_avg, len(confidence_scores), cs_std)
def log_latex(file, latex_name: str, wo_th, w_th, botnet_title: str=None, rows: int=4):
botnet_title_text = ""
if botnet_title is not None:
botnet_title_text = f"\\multirow{{4}}{{*}}{{\\rotatebox[origin=c]{{90}}{{{botnet_title}}}}}"
confidence_score_text_wo = ""
if wo_th[2] is not None:
confidence_score_text_wo = f"${wo_th[2]:.2f}$ ($n={wo_th[3]}$ $\\sigma\\approx{wo_th[4]:.2f}$)"
else: confidence_score_text_wo = "n/a"
confidence_score_text_w = ""
if w_th[2] is not None:
confidence_score_text_w = f"${w_th[2]:.2f}$ ($n={w_th[3]}$ $\\sigma\\approx{w_th[4]:.2f}$)"
else: confidence_score_text_w = "n/a"
latex_line = f"{botnet_title_text} & {latex_name} & ${wo_th[0]:.2f}$ ($\\sigma\\approx{wo_th[1]:.2f}$) & {confidence_score_text_wo} & & ${w_th[0]:.2f}$ ($\\sigma\\approx{w_th[1]:.2f}$) & {confidence_score_text_w} \\\\"
file.write(latex_line + "\n")
def extract_results(botnet: str, args: argparse.Namespace):
logger = logging.getLogger("evaluation.extract_results")
result_data = load_all_results(botnet, args)
bootstrap_list = get_bootstrap_list(botnet)
botnet_peers = get_botnet_peers(botnet)
crawl_data = result_data
# def f_correct_non_bs_shared_peers(x):
# new_peers_raw: Dict[str, List[str]] = x["new_peers_raw"]
# return len(set(new_peers_raw.keys()) & (botnet_peers - bootstrap_list))
# correct_non_bs_shared_peers = list(map(f_correct_non_bs_shared_peers, crawl_data))
# log_stat(logger, "correct_non_bs_shared_peers", correct_non_bs_shared_peers)
confidence_scores = []
def get_confidence_scores(new_peers_raw, peers):
res = []
for peer in peers:
for _,pois in new_peers_raw[peer].items():
for poi in pois:
res.append(poi["confidence_score"])
return res
def f_extracted_peers(x):
nonlocal confidence_scores
cs = get_confidence_scores(x["new_peers_raw"], x["new_peers_raw"].keys())
if len(cs) != 0:
confidence_scores.append(np.average(cs))
return len(x["new_peers_raw"])
def f_correct_peers(x):
nonlocal confidence_scores
new_peers_raw: Dict[str, List[Poi]] = x["new_peers_raw"]
correct_peers = set(new_peers_raw.keys()) & botnet_peers
cs = get_confidence_scores(new_peers_raw, correct_peers)
if len(cs) != 0:
confidence_scores.append(np.average(cs))
return len(correct_peers)
def f_non_botnet_bs_peers(x):
nonlocal confidence_scores
new_peers_raw: Dict[str, List[Poi]] = x["new_peers_raw"]
non_botnet_bs_peers = set(new_peers_raw.keys()) & (bootstrap_list - botnet_peers)
cs = get_confidence_scores(new_peers_raw, non_botnet_bs_peers)
if len(cs) != 0:
confidence_scores.append(np.average(cs))
return len(non_botnet_bs_peers)
def f_wrong_peers(x):
nonlocal confidence_scores
new_peers_raw: Dict[str, List[Poi]] = x["new_peers_raw"]
wrong_peers = set(new_peers_raw.keys()) - (bootstrap_list | botnet_peers)
cs = get_confidence_scores(new_peers_raw, wrong_peers)
if len(cs) != 0:
confidence_scores.append(np.average(cs))
return len(wrong_peers)
log_with_box(logger, "Without confidence score threshold", before=1, after=1)
confidence_scores = []
extracted_peers = list(map(f_extracted_peers, crawl_data))
res1_wo = log_stat(logger, "extracted_peers", extracted_peers, confidence_scores)
confidence_scores = []
correct_peers = list(map(f_correct_peers, crawl_data))
res2_wo = log_stat(logger, "correct_peers", correct_peers, confidence_scores)
confidence_scores = []
non_botnet_bs_peers = list(map(f_non_botnet_bs_peers, crawl_data))
res3_wo = log_stat(logger, "non_botnet_bs_peers", non_botnet_bs_peers, confidence_scores)
confidence_scores = []
wrong_peers = list(map(f_wrong_peers, crawl_data))
res4_wo = log_stat(logger, "wrong_peers", wrong_peers, confidence_scores)
log_with_box(logger, "With confidence score threshold", before=1, after=1)
results_confidence_score_threshold(crawl_data)
confidence_scores = []
extracted_peers = list(map(f_extracted_peers, crawl_data))
res1_w = log_stat(logger, "extracted_peers", extracted_peers, confidence_scores)
confidence_scores = []
correct_peers = list(map(f_correct_peers, crawl_data))
res2_w = log_stat(logger, "correct_peers", correct_peers, confidence_scores)
confidence_scores = []
non_botnet_bs_peers = list(map(f_non_botnet_bs_peers, crawl_data))
res3_w = log_stat(logger, "non_botnet_bs_peers", non_botnet_bs_peers, confidence_scores)
confidence_scores = []
wrong_peers = list(map(f_wrong_peers, crawl_data))
res4_w = log_stat(logger, "wrong_peers", wrong_peers, confidence_scores)
dest_file = os.path.join(args.working_dir, botnet, "table.txt")
with open(dest_file, "w") as f:
log_latex(f, r"$|\EP|$", res1_wo, res1_w, botnet_title=BOTNETS[botnet]["name"])
log_latex(f, r"$|\mathrm{CORRECT}|$", res2_wo, res2_w)
log_latex(f, r"$|\mathrm{BOOTSTRAP}|$", res3_wo, res3_w)
log_latex(f, r"$|\mathrm{WRONG}|$", res4_wo, res4_w)
f.write(r"\midrule")
def run_sample_for_delay(i: int, botnet: str, native: bool, args: argparse.Namespace):
logger = logging.getLogger("evaluation.run_sample_for_delay")
analysis_package = BOTNETS[botnet]["analysis_package"]
output_folder = os.path.join(args.working_dir, botnet, "delay", f"{'native' if native else 'pin'}_{i}")
config = configparser.ConfigParser()
config.read([MAIN_CONFIG_FILE, os.path.join(analysis_package, "package.ini")])
args = argparse.Namespace(
analysis_package=analysis_package,
output_folder=output_folder
)
config_class = auto_puppeteer.parse_config(config, args)
logger.info("Starting VM")
if native:
snapshot = DELAY_NATIVE_SNAPSHOT
else:
snapshot = config_class.agent_snapshot
config_class.vm.start_from(snapshot)
logger.info("Connecting Agent")
agent_connection = AgentConnector(config_class.agent_address)
logger.info("Uploading package")
agent_connection.upload_package(analysis_package)
logger.info("Starting packet capture")
agent_connection.start_dumpcap()
logger.info("Starting sample")
_run_pintool(agent_connection, config_class)
sleep_time = BOTNETS[botnet]["delay_measure_time"][0 if native else 1]
logger.info(f"Waiting for {sleep_time} seconds...")
if native:
time.sleep(sleep_time)
else:
ipc_server = agent_connection.get_ipc_server()
def wrapper_callback(pid: int, function: WrapperFunction, ip: IPv4Address, port: int) -> Optional[bool]:
return True
_ipc_server_listen(ipc_server, wrapper_callback, timeout=sleep_time)
logger.info(f"Downloading output to \"{output_folder}\"")
agent_connection.download_output(output_folder)
logger.info(f" Stopping VM")
config_class.vm.stop()
def measure_delay(botnet: str, args: argparse.Namespace):
logger = logging.getLogger("evaluation.measure_delay")
begin = args.begin if args.begin is not None else 0
end = args.end if args.end is not None else args.n-1
log_with_box(logger, "Native", before=1, after=1)
for i in range(begin, end+1):
log_with_box(logger, str(i), before=0, after=0)
run_sample_for_delay(i, botnet, True, args)
log_with_box(logger, "With Pin", before=1, after=1)
for i in range(begin, end+1):
log_with_box(logger, str(i), before=0, after=0)
run_sample_for_delay(i, botnet, False, args)
def stat_col(table, i: int):
col = list(map(lambda x: x[i], table))
return (
np.average(col),
np.std(col)
)
def analyze_delay(botnet: str, args: argparse.Namespace):
logger = logging.getLogger("evaluation.analyze_delay")
begin = args.begin if args.begin is not None else 0
end = args.end if args.end is not None else args.n-1
results_native = []
results_pin = []
log_with_box(logger, "Native", before=1, after=1)
for i in range(begin, end+1):
log_with_box(logger, str(i), before=0, after=0)
pcap_file = os.path.join(args.working_dir, botnet, "delay", f"native_{i}", "dump.pcapng")
output = subprocess.check_output(f"tshark -T fields -n -r {pcap_file} -E separator=, -e _ws.col.Time -e ip.src -e ip.dst -e tcp.dstport -e udp.dstport \"{BOTNETS[botnet]['filter']}\"", shell=True)
output = output.decode("utf-8")
parsed_output = [x.split(",") for x in output.split("\n")]
logger.info(f"Example line: {parsed_output[10]}")
T_0 = float(parsed_output[0][0])
T_1 = float(parsed_output[20][0])
T_2 = float(parsed_output[40][0])
results_native.append([T_0, T_1, T_2])
log_with_box(logger, "With Pin", before=1, after=1)
for i in range(begin, end+1):
log_with_box(logger, str(i), before=0, after=0)
pcap_file = os.path.join(args.working_dir, botnet, "delay", f"pin_{i}", "dump.pcapng")
output = subprocess.check_output(f"tshark -T fields -n -r {pcap_file} -E separator=, -e _ws.col.Time -e ip.src -e ip.dst -e tcp.dstport -e udp.dstport \"{BOTNETS[botnet]['filter']}\"", shell=True)
output = output.decode("utf-8")
parsed_output = [x.split(",") for x in output.split("\n")]
logger.info(f"Example line: {parsed_output[10]}")
T_0 = float(parsed_output[0][0])
T_1 = float(parsed_output[20][0])
T_2 = float(parsed_output[40][0])
results_pin.append([T_0, T_1, T_2])
def format_stats(table):
res = ""
for i in range(6):
stats = stat_col(table, i)
if i == 3:
res += " &"
res += f" & ${stats[0]:.2f}$ ($\\sigma\\approx{stats[1]:.2f}$)"
return res
# line = line.copy()
# line.insert(3, None)
# return " & ".join(list(map(
# lambda x: f"{x:.2f}s" if x is not None else "",
# line
# )))
table = []
outfile = os.path.join(args.working_dir, botnet, "delay", "out.txt")
with open(outfile, "w") as f:
for i,(r_native,r_pin) in enumerate(zip(results_native, results_pin)):
row = r_native + r_pin
row[5] = row[5] - row[4]
row[4] = row[4] - row[3]
row[2] = row[2] - row[1]
row[1] = row[1] - row[0]
table.append(row)
f.write(f"{BOTNETS[botnet]['name']}{format_stats(table)}\\\\\n")
logger.info(f"Wrote output to {outfile}")
if __name__ == "__main__":
logging.config.fileConfig("evaluation_logging.conf")
logger = logging.getLogger(__name__)
def botnet_verifier(val):
if val not in BOTNETS:
raise ValueError(f"{val} is not a valid botnet.")
return val
parser = argparse.ArgumentParser(prog='python3 evaluation.py')
parser.add_argument("-b", "--botnet", action="append", help="The botnets to use.", type=botnet_verifier, default=[], dest="botnets")
parser.add_argument("working_dir", help="The directory where all files being processed by this tool will be place/loaded from.")
subparsers = parser.add_subparsers(help='The operation to perform.', required=True, dest="subparser_name")
parser_collect = subparsers.add_parser('collect1', help='Run the data collection. Step 1.')
parser_collect.add_argument("--skip_pois", help="Skip the POI collection run with the MemoryPatternPoiExtractor.", action="store_false", dest="do_pois")
parser_collect.add_argument("--skip_crawling", help="Skip the crawling run w/o the MemoryPatternPoiExtractor.", action="store_false", dest="do_crawling")
parser_collect = subparsers.add_parser('collect2', help='Run the data collection. Step 2 (a lot of RAM required).')
parser_graph = subparsers.add_parser('graph', help='Generate the graphs.')
parser_graph.add_argument("--show", help="Show the resulting graphs.", action="store_true")
parser_graph.add_argument("--skip_poi_correctness", action="store_false", dest="do_poi_correctness")
parser_graph.add_argument("--skip_pois", action="store_false", dest="do_pois")
parser_graph.add_argument("--skip_threshold", action="store_false", dest="do_threshold")
parser_delay = subparsers.add_parser('delay', help='Measure the delay introduced by the PinPuppet pintool.')
parser_delay.add_argument("-n", help="The number of repetitions.", type=int, default=5)
parser_delay.add_argument("--begin", type=int)
parser_delay.add_argument("--end", type=int)
parser_delay_analysis = subparsers.add_parser('analyze_delay', help='Analyze the delay measurement results from "delay".')
parser_delay_analysis.add_argument("-n", help="The number of repetitions.", type=int, default=5)
parser_delay_analysis.add_argument("--begin", type=int)
parser_delay_analysis.add_argument("--end", type=int)
parser_results = subparsers.add_parser('results', help='Extract the results.')
args = parser.parse_args()
loop = True
print(args)
if args.subparser_name == "collect1":
fun = collect_data1
elif args.subparser_name == "collect2":
fun = collect_data2
elif args.subparser_name == "graph":
fun = graph_data
loop = False
elif args.subparser_name == "results":
fun = extract_results
elif args.subparser_name == "delay":
fun = measure_delay
elif args.subparser_name == "analyze_delay":
fun = analyze_delay
else: assert(False)
if loop:
for botnet in args.botnets:
log_with_box(logger, f"########## Running {args.subparser_name} for {botnet} ##########")
fun(botnet, args)
log_with_box(logger, f"########## Done with {args.subparser_name} for {botnet} ##########")
else:
log_with_box(logger, f"########## Running {args.subparser_name} for {args.botnets} ##########")
fun(args.botnets, args)
log_with_box(logger, f"########## Done with {args.subparser_name} for {args.botnets} ##########")