-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
270 lines (234 loc) · 11.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
import logging
logging.basicConfig(level=logging.INFO)
from argparse import ArgumentParser
from pytorch_lightning import Trainer
from pytorch_lightning.utilities import rank_zero_info, rank_zero_only
import pytorch_lightning as pl
parser = ArgumentParser()
parser.add_argument("--load_model", default="", type=str) # full path, with .pth
parser.add_argument("--wandb", default="", type=str) # wandb project name. if "" then don't use wandb
parser.add_argument("--proj_dir", default="out", type=str)
parser.add_argument("--random_seed", default="-1", type=int)
parser.add_argument("--train_type", default="", type=str) # ""/"states"
parser.add_argument("--data_file", default="", type=str)
parser.add_argument("--vocab_size", default=0, type=int) # vocab_size = 0 means auto (for char-level LM and .txt data)
parser.add_argument("--ctx_len", default=1024, type=int)
parser.add_argument("--epoch_steps", default=1000, type=int) # a mini "epoch" has [epoch_steps] steps
parser.add_argument("--epoch_count", default=500, type=int) # train for this many "epochs". will continue afterwards with lr = lr_final
parser.add_argument("--epoch_begin", default=0, type=int) # if you load a model trained for x "epochs", set epoch_begin = x
parser.add_argument("--epoch_save", default=5, type=int) # save the model every [epoch_save] "epochs"
parser.add_argument("--micro_bsz", default=12, type=int) # micro batch size (batch size per GPU)
parser.add_argument("--n_layer", default=6, type=int)
parser.add_argument("--n_embd", default=512, type=int)
parser.add_argument("--dim_att", default=0, type=int)
parser.add_argument("--dim_ffn", default=0, type=int)
parser.add_argument("--head_qk", default=0, type=int) # my headQK trick
parser.add_argument("--tiny_att_dim", default=0, type=int) # tiny attention dim
parser.add_argument("--tiny_att_layer", default=-999, type=int) # tiny attention @ which layer
parser.add_argument("--lr_init", default=6e-4, type=float) # 6e-4 for L12-D768, 4e-4 for L24-D1024, 3e-4 for L24-D2048
parser.add_argument("--lr_final", default=1e-5, type=float)
parser.add_argument("--warmup_steps", default=-1, type=int) # try 20 if you load a model
parser.add_argument("--beta1", default=0.9, type=float)
parser.add_argument("--beta2", default=0.99, type=float) # use 0.95 if you see spikes
parser.add_argument("--adam_eps", default=1e-18, type=float)
parser.add_argument("--grad_cp", default=0, type=int) # gradient checkpt: saves VRAM, but slower
parser.add_argument("--dropout", default=0, type=float) # try 0.01 / 0.02 / 0.05 / 0.1
parser.add_argument("--weight_decay", default=0, type=float) # try 0.1
parser.add_argument("--weight_decay_final", default=-1, type=float)
parser.add_argument("--grad_clip", default=1.0, type=float) # reduce it to 0.7 / 0.5 / 0.3 / 0.2 for problematic samples
parser.add_argument("--my_pile_version", default=1, type=int) # my special pile version
parser.add_argument("--my_pile_stage", default=0, type=int) # my special pile mode
parser.add_argument("--my_pile_shift", default=-1, type=int) # my special pile mode - text shift
parser.add_argument("--my_pile_edecay", default=0, type=int)
parser.add_argument("--layerwise_lr", default=1, type=int) # layerwise lr for faster convergence (but slower it/s)
parser.add_argument("--ds_bucket_mb", default=200, type=int) # deepspeed bucket size in MB. 200 seems enough
parser.add_argument("--my_sample_len", default=0, type=int)
parser.add_argument("--my_ffn_shift", default=1, type=int)
parser.add_argument("--my_att_shift", default=1, type=int)
parser.add_argument("--head_size_a", default=64, type=int) # can try larger values for larger models
parser.add_argument("--head_size_divisor", default=8, type=int)
parser.add_argument("--load_partial", default=0, type=int)
parser.add_argument("--magic_prime", default=0, type=int)
parser.add_argument("--my_random_steps", default=0, type=int)
parser.add_argument("--my_exit", default=99999999, type=int)
parser.add_argument("--my_exit_tokens", default=0, type=int)
parser = Trainer.add_argparse_args(parser)
args = parser.parse_args()
########################################################################################################
import os, warnings, math, datetime, sys, time
import numpy as np
import torch
from torch.utils.data import DataLoader
if "deepspeed" in args.strategy:
import deepspeed
from pytorch_lightning import seed_everything
if args.random_seed >= 0:
print(f"########## WARNING: GLOBAL SEED {args.random_seed} THIS WILL AFFECT MULTIGPU SAMPLING ##########\n" * 3)
seed_everything(args.random_seed)
np.set_printoptions(precision=4, suppress=True, linewidth=200)
warnings.filterwarnings("ignore", ".*Consider increasing the value of the `num_workers` argument*")
warnings.filterwarnings("ignore", ".*The progress bar already tracks a metric with the*")
# os.environ["WDS_SHOW_SEED"] = "1"
args.my_timestamp = datetime.datetime.today().strftime("%Y-%m-%d-%H-%M-%S")
args.enable_checkpointing = False
args.replace_sampler_ddp = False
args.logger = False
args.gradient_clip_val = args.grad_clip
args.num_sanity_val_steps = 0
args.check_val_every_n_epoch = int(1e20)
args.log_every_n_steps = int(1e20)
args.max_epochs = -1 # continue forever
args.betas = (args.beta1, args.beta2)
args.real_bsz = int(args.num_nodes) * int(args.devices) * args.micro_bsz
os.environ["RWKV_CTXLEN"] = str(args.ctx_len)
os.environ["RWKV_HEAD_SIZE_A"] = str(args.head_size_a)
os.environ["RWKV_TRAIN_TYPE"] = args.train_type
if args.dim_att <= 0:
args.dim_att = args.n_embd
args.dim_ffn = int((args.n_embd * 4) // 32 * 32)
args.run_name = f"{args.vocab_size} ctx{args.ctx_len} L{args.n_layer} D{args.n_embd}"
if not os.path.exists(args.proj_dir):
os.makedirs(args.proj_dir)
if args.my_pile_stage > 0:
magic_prime_bak = args.magic_prime
if args.my_pile_shift < 0:
args.my_pile_shift = 0
if magic_prime_bak > 0:
args.magic_prime = magic_prime_bak
args.epoch_count = args.magic_prime // 40320
args.epoch_steps = 40320 // args.real_bsz
assert args.epoch_steps * args.real_bsz == 40320
if args.my_pile_stage >= 2 and len(args.load_model) == 0: # find latest saved model
list_p = []
for p in os.listdir(args.proj_dir):
if p.startswith("rwkv") and p.endswith(".pth"):
p = ((p.split("-"))[1].split("."))[0]
if p != "final":
if p == "init":
p = -1
else:
p = int(p)
list_p += [p]
list_p.sort()
max_p = list_p[-1]
if len(list_p) > 1:
args.my_pile_prev_p = list_p[-2] # in case max_p is corrupted
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
if args.warmup_steps < 0:
if args.my_pile_stage == 2:
args.warmup_steps = 10
else:
args.warmup_steps = 30
args.epoch_begin = max_p + 1
else:
args.epoch_begin = 0
samples_per_epoch = args.epoch_steps * args.real_bsz
tokens_per_epoch = samples_per_epoch * args.ctx_len
try:
deepspeed_version = deepspeed.__version__
except:
deepspeed_version = None
pass
rank_zero_info(
f"""
############################################################################
#
# RWKV-7 {args.precision.upper()} on {args.num_nodes}x{args.devices} {args.accelerator.upper()}, bsz {args.num_nodes}x{args.devices}x{args.micro_bsz}={args.real_bsz}, {args.strategy} {'with grad_cp' if args.grad_cp > 0 else ''}
#
# Data = {args.data_file} (binidx), ProjDir = {args.proj_dir}
#
# Epoch = {args.epoch_begin} to {args.epoch_begin + args.epoch_count - 1} (will continue afterwards), save every {args.epoch_save} epoch
#
# Each "epoch" = {args.epoch_steps} steps, {samples_per_epoch} samples, {tokens_per_epoch} tokens
#
# Model = {args.n_layer} n_layer, {args.n_embd} n_embd, {args.ctx_len} ctx_len
#
# Adam = lr {args.lr_init} to {args.lr_final}, warmup {args.warmup_steps} steps, beta {args.betas}, eps {args.adam_eps}
#
# Found torch {torch.__version__}, recommend latest torch
# Found deepspeed {deepspeed_version}, recommend latest deepspeed
# Found pytorch_lightning {pl.__version__}, recommend 1.9.5
#
############################################################################
"""
)
rank_zero_info(str(vars(args)) + "\n")
if args.lr_final == 0 or args.lr_init == 0:
rank_zero_info("\n\nNote: lr_final = 0 or lr_init = 0. Using linear LR schedule instead.\n\n")
assert args.precision in ["fp32", "tf32", "fp16", "bf16"]
os.environ["RWKV_FLOAT_MODE"] = args.precision
if args.precision == "fp32":
for i in range(10):
rank_zero_info("\n\nNote: you are using fp32 (very slow). Try bf16 / tf32 for faster training.\n\n")
if args.precision == "fp16":
rank_zero_info("\n\nNote: you are using fp16 (might overflow). Try bf16 / tf32 for stable training.\n\n")
os.environ["RWKV_JIT_ON"] = "1"
if "deepspeed_stage_3" in args.strategy:
os.environ["RWKV_JIT_ON"] = "0"
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.enabled = True
if args.precision == "fp32":
torch.backends.cudnn.allow_tf32 = False
torch.backends.cuda.matmul.allow_tf32 = False
else:
torch.backends.cudnn.allow_tf32 = True
torch.backends.cuda.matmul.allow_tf32 = True
if "32" in args.precision:
args.precision = 32
elif args.precision == "fp16":
args.precision = 16
else:
args.precision = "bf16"
########################################################################################################
from src.trainer import train_callback, generate_init_weight
from src.dataset import MyDataset
train_data = MyDataset(args)
args.vocab_size = train_data.vocab_size
from src.model import RWKV
model = RWKV(args)
if len(args.load_model) == 0 or args.my_pile_stage == 1: # shall we build the initial weights?
init_weight_name = f"{args.proj_dir}/rwkv-init.pth"
generate_init_weight(model, init_weight_name) # save initial weights
args.load_model = init_weight_name
rank_zero_info(f"########## Loading {args.load_model}... ##########")
try:
load_dict = torch.load(args.load_model, map_location="cpu")
load_keys = list(load_dict.keys())
except:
rank_zero_info(f"Bad checkpoint {args.load_model}")
if args.my_pile_stage >= 2: # try again using another checkpoint
max_p = args.my_pile_prev_p
if max_p == -1:
args.load_model = f"{args.proj_dir}/rwkv-init.pth"
else:
args.load_model = f"{args.proj_dir}/rwkv-{max_p}.pth"
args.epoch_begin = max_p + 1
rank_zero_info(f"Trying {args.load_model}")
load_dict = torch.load(args.load_model, map_location="cpu")
if args.load_partial == 1:
load_keys = load_dict.keys()
for k in model.state_dict():
if k not in load_keys:
load_dict[k] = model.state_dict()[k]
model.load_state_dict(load_dict, strict=False)
trainer = Trainer.from_argparse_args(
args,
callbacks=[train_callback(args)],
)
if trainer.global_rank == 0:
for n in model.state_dict():
shape = model.state_dict()[n].shape
s0 = str(shape[0]) if len(shape) > 0 else ""
s1 = str(shape[1]) if len(shape) > 1 else ""
s2 = str(shape[2]) if len(shape) > 2 else ""
s3 = str(shape[3]) if len(shape) > 3 else ""
print(f"{s0.ljust(5)} {s1.ljust(5)} {s2.ljust(5)} {s3.ljust(5)} {n}")
if "deepspeed" in args.strategy:
trainer.strategy.config["zero_optimization"]["allgather_bucket_size"] = args.ds_bucket_mb * 1000 * 1000
trainer.strategy.config["zero_optimization"]["reduce_bucket_size"] = args.ds_bucket_mb * 1000 * 1000
# must set shuffle=False, persistent_workers=False (because worker is in another thread)
data_loader = DataLoader(train_data, shuffle=False, pin_memory=True, batch_size=args.micro_bsz, num_workers=1, persistent_workers=False, drop_last=True)
trainer.fit(model, data_loader)