forked from fitoprincipe/geetools-code-editor
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcloud_masks
346 lines (289 loc) · 10.4 KB
/
cloud_masks
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
/***
* Functions to apply cloud mask to different collections
*
* Author: Rodrigo E. Principe
* email: [email protected]
* License: MIT
* Repository: https://github.com/fitoprincipe/geetools-code-editor
*/
var tools = require('users/fitoprincipe/geetools:tools')
var l_algo = require('users/fitoprincipe/geetools:list_algorithms')
var dt = require('users/fitoprincipe/geetools:decision_tree')
var helpers = require('users/fitoprincipe/geetools:helpers_js')
var help = {};
var compute = function(image, mask_band, bits, options) {
// cast params in case they are not EE objects
var bits_dict = ee.Dictionary(bits)
var opt = ee.List(options)
image = ee.Image(image).select(mask_band)
var first = ee.Image.constant(0) // init image
// function for iterate over the options
var for_iterate = function(option, ini) {
var i = ee.Image(ini) // cast ini
// bits relation dict contains the option?
var cond = bits_dict.contains(option);
// get the mask for the option
var mask = tools.computeQAbits(ee.List(bits_dict.get(option)).get(0),
ee.List(bits_dict.get(option)).get(1),
option)(image)
return ee.Image(ee.Algorithms.If(cond,
i.or(mask),
i))
}
var good_pix = ee.Image(opt.iterate(for_iterate, first))
return good_pix.not();
}
var sentinel2 = function(options) {
var opt = options || ['opaque', 'cirrus']
var rel = {opaque: [10, 10] , cirrus:[11, 11]}
var band = 'QA60'
var wrap = function(img){
var good_pix = compute(img, band, rel, opt)
return img.updateMask(good_pix)
}
return wrap
}
var landsatSR = function(options) {
var sr = {
bits: ee.Dictionary(
{
'cloud': [1,1],
'shadow': [2,2],
'adjacent': [3,3],
'snow': [4,4]
}),
band: 'sr_cloud_qa'}
var pix = {
bits: ee.Dictionary(
{
'cloud': [5,5],
'shadow': [3,3],
'snow': [4,4]
}),
band: 'pixel_qa'}
// Parameters
var opt = options || sr.bits.keys();
options = ee.List(opt);
var wrap = function(image) {
var bands = image.bandNames();
var contains_sr = bands.contains('sr_cloud_qa');
var good_pix = ee.Image(ee.Algorithms.If(contains_sr,
compute(image, sr.band, sr.bits, opt),
compute(image, pix.band, pix.bits, opt)))
// var good_pix = compute(image, mask_band, bits, opt)
return image.updateMask(good_pix)
}
return wrap
}
var landsatTOA = function(options) {
var bits = ee.Dictionary({
'cloud': [4, 4],
'shadow': [8, 8],
'snow': [10, 10]
});
var mask_band = 'BQA'
// Parameters
var opt = options || bits.keys();
options = ee.List(opt);
var wrap = function(image) {
var good_pix = compute(image, mask_band, bits, options)
return image.updateMask(good_pix);
}
return wrap
}
var landsatTOAmask = function(name) {
var bits = ee.Dictionary({'cloud': [4,4], 'shadow': [8,8], 'snow': [10,10]});
var mask_band = 'BQA';
// Parameters
name = name || 'cloud_mask';
var options = bits.keys();
var wrap = function(image) {
var good_pix = compute(image, mask_band, bits, options)
return good_pix.rename(name);
}
return wrap
}
var modisSR = function(options) {
var bits = ee.Dictionary({
'cloud': [0, 0],
'mix': [1,1],
'shadow': [2,2],
'cloud2':[10,10],
'snow':[12,12]
});
var opt = options || bits.keys()
var mask_band = 'state_1km'
options = ee.List(opt);
var wrap = function(image) {
var good_pix = compute(image, mask_band, bits, opt)
return image.updateMask(good_pix);
}
return wrap
}
var sclData = ee.Dictionary({
'saturated': [1, 0],
'dark': [2, 0],
'shadow': [3, 0],
'vegetation': [4, 1],
'bare_soil': [5, 1],
'water': [6, 0],
'cloud_low': [7, 0],
'cloud_medium': [8, 0],
'cloud_high': [9, 0],
'cirrus': [10, 0],
'snow': [11, 0]
})
var scl = function(image) {
// Decodify the SCL bands and create a mask for each category
var i = image.select('SCL')
var data = ee.Dictionary(sclData)
var wrap = function(name, list) {
list = ee.List(list)
name = ee.String(name)
var band_value = ee.Number(list.get(0))
var mask = i.eq(band_value).rename(name)
return mask
}
var newbands = ee.Dictionary(data.map(wrap))
var images = newbands.values()
var first = ee.Image(images.get(0))
var rest = images.slice(1)
return ee.Image(tools.image.addMultiBands(first, rest))
}
var sclMask = function(options) {
var opt = options || ['saturated', 'dark', 'shadow', 'cloud_low',
'cloud_medium', 'cloud_high', 'cirrus', 'snow']
opt = ee.List(opt)
var wrap = function(img) {
var r = opt.iterate(function(name, i){
i = ee.Image(i)
name = ee.String(name)
var data = ee.List(sclData.get(name))
var value = ee.Number(data.get(0))
var direction = ee.Number(data.get(1))
var band = i.select('SCL')
var mask = ee.Algorithms.If(direction,
band.eq(value),
band.neq(value)
)
mask = ee.Image(mask)
return i.updateMask(mask)
}, img)
return ee.Image(r)
}
return wrap
}
var hollstein_S2 = function(options) {
// Taken from André Hollstein et al. 2016 (doi:10.3390/rs8080666)
// http://www.mdpi.com/2072-4292/8/8/666/pdf
var opt = options || ['cloud', 'snow', 'shadow', 'water', 'cirrus']
var difference = function(a, b) {
var wrap = function(img) {
return img.select(a).subtract(img.select(b))
}
return wrap
}
var ratio = function(a, b) {
var wrap = function(img) {
return img.select(a).divide(img.select(b))
}
return wrap
}
var opt_list = ee.List(opt)
var compute_dt = function(img) {
//1
var b3 = img.select('B3').lt(3190)
//2
var b8a = img.select('B8A').lt(1660)
var r511 = ratio('B5', 'B11')(img).lt(4.33)
//3
var s1110 = difference('B11', 'B10')(img).lt(2550)
var b3_3 = img.select('B3').lt(5250)
var r210 = ratio('B2','B10')(img).lt(14.689)
var s37 = difference('B3', 'B7')(img).lt(270)
//4
var r15 = ratio('B1', 'B5')(img).lt(1.184)
var s67 = difference('B6', 'B7')(img).lt(-160)
var b1 = img.select('B1').lt(3000)
var r29 = ratio('B2', 'B9')(img).lt(0.788)
var s911 = difference('B9', 'B11')(img).lt(210)
var s911_2 = difference('B9', 'B11')(img).lt(-970)
var dtf = dt.binary({1:b3,
21:b8a, 22:r511,
31:s37, 32:r210, 33:s1110, 34:b3_3,
41: s911_2, 42:s911, 43:r29, 44:s67, 45:b1, 46:r15
},
{'shadow-1':[[1,1], [21,1], [31,1], [41,0]],
'water': [[1,1], [21,1], [31,0], [42,1]],
'shadow-2':[[1,1], [21,1], [31,0], [42,0]],
'cirrus-2':[[1,1], [21,0], [32,1], [43,0]],
'cloud-1': [[1,0], [22,1], [33,1], [44,1]],
'cirrus-1':[[1,0], [22,1], [33,1], [44,0]],
'cloud-2': [[1,0], [22,1], [33,0], [45,0]],
'shadow-3':[[1,0], [22,0], [34,1], [46,0]],
'snow': [[1,0], [22,0], [34,0]],
}, 'hollstein')
var results = dtf(img)
var optlist = ee.List(opt)
var finalmask = ee.Image(optlist.iterate(function(option, ini){
ini = ee.Image(ini)
var mask = results.select([option])
return ini.or(mask)
}, ee.Image.constant(0).select([0], ['hollstein'])))
return img.addBands(results).updateMask(finalmask.not())//results.select('hollstein'))
}
return compute_dt
}
var make = {
sentinel2: sentinel2,
landsatSR: landsatSR,
landsatTOA: landsatTOA,
modisSR: modisSR,
hollstein_S2: hollstein_S2
}
help['sentinel2'] = 'sentinel2(options)\n\n'+
'function to mask out clouds of Sentinel 2 images\n'+
'options (list): opaque, cirrus'
help['landsatSR'] = 'landsatSR(options)\n\n'+
'function to mask out clouds of Landsat SR images\n'+
'collections: LANDSAT/LT04/C01/T1_SR, LANDSAT/LT05/C01/T1_SR,\n'+
'LANDSAT/LE07/C01/T1_SR, LANDSAT/LC08/C01/T1_SR\n'+
'options (list): cloud, shadow, adjacent (only L8), snow'
help['landsatTOA'] = 'landsatTOA(options)\n\n'+
'function to mask out clouds of Landsat TOA images\n'+
'collections: LANDSAT/LT04/C01/T1_TOA, LANDSAT/LT05/C01/T1_TOA,\n'+
'LANDSAT/LE07/C01/T1_TOA, LANDSAT/LC08/C01/T1_TOA\n'+
'options (list): cloud, shadow, snow'
help['modisSR'] = 'modis(options)\n\n'+
'function to mask out clouds of MODIS images\n'+
'collections: MODIS/006/MOD09GA, MODIS/006/MYD09GA\n'+
'options (list): cloud, mix, shadow, cloud2, snow'
help['hollstein_S2'] = 'hollstein_S2(options)\n\n'+
'Implementation of the decision tree developed by André Hollstein et al. 2016 (doi:10.3390/rs8080666) (http://www.mdpi.com/2072-4292/8/8/666/pdf)\n'+
'options: a list with one or more of "cloud", "water", "cirrus", "snow", "shadow"\n'
help['make'] = 'Create functions using a key. Example:\n'+
"var make = require('users/fitoprincipe/geetools:cloud_masks').make\n"+
'var s2 = make.sentinel2()\n'+
'var LSR = make.landsatSR()'
exports.help = help
exports.sentinel2 = sentinel2
exports.landsatSR = landsatSR
exports.landsatTOA = landsatTOA
exports.landsatTOAmask = landsatTOAmask
exports.modisSR = modisSR
exports.make = make
exports.hollstein_S2 = hollstein_S2
exports.options = ee.Dictionary(help).keys()
exports.compute = compute
exports.scl = scl
exports.sclMask = sclMask
var Test = function() {
print('running')
var sat = require('users/fitoprincipe/geetools:satellite')
var s2 = new sat.Sentinel(2, 'SR')
var site = tools.map.getBounds(Map)
var col = s2.collection.filterBounds(site).filterMetadata(s2.cloud_cover, 'less_than', 10)
var first = col.first()
Map.addLayer(first, s2.vis.NSR, 'S2 SR')
}
//Test()