forked from ennauata/housegan
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_v2.py
415 lines (364 loc) · 21.2 KB
/
main_v2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
import argparse
import os
import numpy as np
import math
from floorplan_dataset_maps import FloorplanGraphDataset, floorplan_collate_fn
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch
from PIL import Image, ImageDraw, ImageOps
from utils import combine_images_maps, rectangle_renderer,transfer_list_to_tensor
from models import Discriminator, Generator, compute_div_loss_v1, weights_init_normal,compute_gradient_penalty,compute_area_norm_penalty,compute_sparsity_penalty,compute_common_loss,compute_sparsity_penalty_v1
import os
from datetime import datetime
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
parser = argparse.ArgumentParser()
parser.add_argument("--n_epochs", type=int, default=1000000, help="number of epochs of training")
parser.add_argument("--batch_size", type=int, default=32, help="size of the batches")
parser.add_argument("--optim", type=str, default='adam', help="adam: learning rate")
parser.add_argument("--g_lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--d_lr", type=float, default=0.0001, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of first order momentum of gradient")
parser.add_argument("--n_cpu", type=int, default=4, help="number of cpu threads to use during batch generation")
parser.add_argument("--latent_dim", type=int, default=128, help="dimensionality of the latent space")
parser.add_argument("--img_size", type=int, default=32, help="size of each image dimension")
parser.add_argument("--sample_interval", type=int, default=1000, help="interval between image sampling")
parser.add_argument("--exp_folder", type=str, default='exp', help="destination folder")
parser.add_argument("--n_critic", type=int, default=1, help="number of training steps for discriminator per iter")
parser.add_argument("--target_set", type=str, default='D', help="which split to remove")
parser.add_argument("--eloss_lim", type=int, default=1, help="extra_loss_limitation")
parser.add_argument("--is_mean", type=bool, default=True, help="extra_loss_mean")
parser.add_argument("--debug", type=bool, default=False, help="debug")
parser.add_argument('--clamp_lower', type=float, default=-0.01)
parser.add_argument('--clamp_upper', type=float, default=0.01)
opt = parser.parse_args()
debug = opt.debug
import logging
if debug : ## debug variable impact the rest of packages
logging.basicConfig(level=logging.DEBUG)
extra_loss_lim = opt.eloss_lim
cuda = True if torch.cuda.is_available() else False
lambda_gp = 10
multi_gpu = False
is_mean = opt.is_mean
# exp_folder = "{}_{}_g_lr_{}_d_lr_{}_bs_{}_ims_{}_ld_{}_b1_{}_b2_{}".format(opt.exp_folder, opt.target_set, opt.g_lr, opt.d_lr, \
# opt.batch_size, opt.img_size, \
# opt.latent_dim, opt.b1, opt.b2)
exp_folder = "{}_{}".format(opt.exp_folder, opt.target_set)
os.makedirs("./exps/"+exp_folder, exist_ok=True)
os.makedirs("./exps/"+exp_folder, exist_ok=True)
os.makedirs("./temp/", exist_ok=True)
os.makedirs("./tracking/", exist_ok=True)
os.makedirs("./checkpoints/", exist_ok=True)
# Loss function
adversarial_loss = torch.nn.BCEWithLogitsLoss()
# Initialize generator and discriminator
generator = Generator()
discriminator = Discriminator()
if cuda:
generator.cuda()
discriminator.cuda()
if cuda:
generator.cuda()
discriminator.cuda()
adversarial_loss.cuda()
# Support to multiple GPUs
def graph_scatter(inputs, device_ids, indices):
nd_to_sample, ed_to_sample = indices
batch_size = (torch.max(nd_to_sample) + 1).detach().cpu().numpy()
N = len(device_ids)
shift = np.round(np.linspace(0, batch_size, N, endpoint=False)).astype(int)
shift = list(shift) + [int(batch_size)]
outputs = []
for i in range(len(device_ids)):
if len(inputs) <= 3:
x, y, z = inputs
else:
x, y, z, w = inputs
inds = torch.where((nd_to_sample>=shift[i])&(nd_to_sample<shift[i+1]))[0]
x_split = x[inds]
y_split = y[inds]
inds = torch.where(nd_to_sample<shift[i])[0]
min_val = inds.size(0)
inds = torch.where((ed_to_sample>=shift[i])&(ed_to_sample<shift[i+1]))[0]
z_split = z[inds].clone()
z_split[:, 0] -= min_val
z_split[:, 2] -= min_val
if len(inputs) > 3:
inds = torch.where((nd_to_sample>=shift[i])&(nd_to_sample<shift[i+1]))[0]
w_split = (w[inds]-shift[i]).long()
_out = (x_split.to(device_ids[i]), \
y_split.to(device_ids[i]), \
z_split.to(device_ids[i]), \
w_split.to(device_ids[i]))
else:
_out = (x_split.to(device_ids[i]), \
y_split.to(device_ids[i]), \
z_split.to(device_ids[i]))
outputs.append(_out)
return outputs
def data_parallel(module, _input, indices):
device_ids = list(range(torch.cuda.device_count()))
output_device = device_ids[0]
replicas = nn.parallel.replicate(module, device_ids)
inputs = graph_scatter(_input, device_ids, indices)
replicas = replicas[:len(inputs)]
outputs = nn.parallel.parallel_apply(replicas, inputs)
return nn.parallel.gather(outputs, output_device)
# # Initialize weights
# generator.apply(weights_init_normal)
# discriminator.apply(weights_init_normal)
# Visualize a single batch
def visualizeSingleBatch(fp_loader_test, opt,):
with torch.no_grad():
# Unpack batch
mks, nds, eds, nd_to_sample, ed_to_sample = next(iter(fp_loader_test))
real_mks = Variable(mks.type(Tensor))
given_nds = Variable(nds.type(Tensor))
given_eds = eds
# Generate a batch of images
z_shape = [real_mks.shape[0], opt.latent_dim]
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
gen_mks = generator(z, given_nds, given_eds)
# Generate image tensors
real_imgs_tensor = combine_images_maps(real_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
fake_imgs_tensor = combine_images_maps(gen_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
#iou_norm,giou_norm = compute_iou_list(real_mks,given_y,given_w,nd_to_sample,ed_to_sample,'valid')
# Save images
#np.save()
save_image(real_imgs_tensor, "./exps/{}/{}_real.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
save_image(fake_imgs_tensor, "./exps/{}/{}_fake.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
extracted_room_stats = [gen_mks.detach().cpu().numpy(),real_mks.detach().cpu().numpy(), given_nds.detach().cpu().numpy(), given_eds.detach().cpu().numpy(), \
nd_to_sample.detach().cpu().numpy(), ed_to_sample.detach().cpu().numpy()]
np.save('./tracking/vaild_stats_'+exp_folder+str(batches_done)+'.npy',extracted_room_stats)
#return iou_norm,giou_norm
def visualizeBatch(real_mks,gen_mks,given_nds,given_eds,nd_to_sample,ed_to_sample):
with torch.no_grad():
imgs_tensor = combine_images_maps(gen_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
save_image(imgs_tensor,"./exps/{}/{}_train_gen.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
imgs_tensor = combine_images_maps(real_mks, given_nds, given_eds, \
nd_to_sample, ed_to_sample)
save_image(imgs_tensor,"./exps/{}/{}_train_real.png".format(exp_folder, batches_done), \
nrow=12, normalize=False)
extracted_room_stats = [gen_mks.detach().cpu().numpy(),real_mks.detach().cpu().numpy(), given_nds.detach().cpu().numpy(), given_eds.detach().cpu().numpy(), \
nd_to_sample.detach().cpu().numpy(), ed_to_sample.detach().cpu().numpy()]
np.save('./tracking/train_stats_'+exp_folder+str(batches_done)+'.npy',extracted_room_stats)
return
if __name__ == '__main__':
# Configure data loader
rooms_path = '/Users/home/Dissertation/Code/dataSet/dataset_paper/' # replace with your dataset path need abs path
#rooms_path = '/home/tony_chen_x19/dataset/'
fp_dataset_train = FloorplanGraphDataset(rooms_path, transforms.Normalize(mean=[0.5], std=[0.5]), target_set=opt.target_set)
fp_loader = torch.utils.data.DataLoader(fp_dataset_train,
batch_size=opt.batch_size,
shuffle=True,
num_workers=opt.n_cpu,
collate_fn=floorplan_collate_fn)
fp_dataset_test = FloorplanGraphDataset(rooms_path, transforms.Normalize(mean=[0.5], std=[0.5]), target_set=opt.target_set, split='eval')
fp_loader_test = torch.utils.data.DataLoader(fp_dataset_test,
batch_size=64,
shuffle=False,
num_workers=opt.n_cpu,
collate_fn=floorplan_collate_fn)
# Optimizers
if opt.optim == 'adam' :
optimizer_G = torch.optim.Adam(generator.parameters(), lr=opt.g_lr, betas=(opt.b1, opt.b2))
optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=opt.d_lr, betas=(opt.b1, opt.b2))
else:
#RMSprop
print("traning by useing RMSprop")
optimizer_G = torch.optim.RMSprop(generator.parameters(), lr=opt.g_lr,alpha=0.9)
optimizer_D = torch.optim.RMSprop(discriminator.parameters(), lr=opt.d_lr, alpha=0.9)
Tensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
print('training')
# ----------
# Training
# ----------
batches_done = 0
BCE_logitLoss = nn.BCEWithLogitsLoss()
BCE_loss = nn.BCELoss()
MSE_loss = torch.nn.MSELoss(reduction='mean')
sig = nn.Sigmoid()
for epoch in range(opt.n_epochs):
for b_idx, batch in enumerate(fp_loader):
# Unpack batch
mks, nds, eds, nd_to_sample, ed_to_sample = batch
logging.debug("mks: %s nds:%s nd_to_sample:%s" % (str(mks.shape),str(nds.shape),str(nd_to_sample.shape)))
indices = nd_to_sample, ed_to_sample
# Adversarial ground truths
batch_size = torch.max(nd_to_sample) + 1
valid = Variable(Tensor(batch_size, 1)\
.fill_(1.0), requires_grad=False)
fake = Variable(Tensor(batch_size, 1)\
.fill_(0.0), requires_grad=False)
# Configure input
real_mks = Variable(mks.type(Tensor))
logging.debug('real_mks: %s' % (str(real_mks.shape)))
given_nds = Variable(nds.type(Tensor))
given_eds = eds
# Set grads on
for p in discriminator.parameters():
p.requires_grad = True
# # WGAN需要将判别器的参数绝对值截断到不超过一个固定常数c
# p.data.clamp_(opt.clamp_lower, opt.clamp_upper)
# ---------------------
# Train Discriminator
# ---------------------
optimizer_D.zero_grad()
# Generate a batch of images
z_shape = [real_mks.shape[0], opt.latent_dim] # latent_dim ~ to map high dim space
logging.debug("z.shape %s" % (str(z_shape)))
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
logging.debug("z.shape after N %s" % (str(z.shape)))
if multi_gpu:
gen_mks = data_parallel(generator, (z, given_nds, given_eds), indices)
else:
gen_mks = generator(z, given_nds, given_eds)
# Real images
if multi_gpu:
real_validity = data_parallel(discriminator, \
(real_mks, given_nds, \
given_eds, nd_to_sample), \
indices)
else:
real_validity = discriminator(real_mks, given_nds, given_eds, nd_to_sample)
#[32, 1]
# y=A(x), z=B(y) 求B中参数的梯度,不求A中参数的梯度
# # 第一种方法
# y = A(v1)
# z = B(y.detach()) # 直接用y的value 训练B(y)
# z.backward()
# Fake images
if multi_gpu:
fake_validity = data_parallel(discriminator, \
(gen_mks.detach(), given_nds.detach(), \
given_eds.detach(), nd_to_sample.detach()),\
indices)
else:
fake_validity = discriminator(gen_mks.detach(), given_nds.detach(), \
given_eds.detach(), nd_to_sample.detach())
# Measure discriminator's ability to classify real from generated samples
k = 2
p = 6
if multi_gpu:
div_loss = compute_div_loss_v1(discriminator, real_mks.data, \
gen_mks.data, given_nds.data, \
given_eds.data, nd_to_sample.data,\
ed_to_sample.data,str(batches_done),data_parallel,p=p)
# div_loss = compute_div_loss(discriminator, real_mks.data, \
# gen_mks.data, given_nds.data, \
# given_eds.data, nd_to_sample.data,\
# ed_to_sample.data,str(batches_done),data_parallel,p=p)
else:
div_loss = compute_div_loss_v1(discriminator, real_mks.data, \
gen_mks.data, given_nds.data, \
given_eds.data, nd_to_sample.data, \
ed_to_sample.data,str(batches_done),None,p=p)
# gradient_penalty = compute_gradient_penalty(discriminator, real_mks.data, \
# gen_mks.data, given_nds.data, \
# given_eds.data, nd_to_sample.data, \
# None, None)
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + k*div_loss
#+ lambda_gp * gradient_penalty
# Update discriminator
d_loss.backward()
optimizer_D.step()
# -----------------
# Train Generator
# -----------------
optimizer_G.zero_grad()
# Set grads off
for p in discriminator.parameters():
p.requires_grad = False
# Train the generator every n_critic steps
if b_idx % opt.n_critic == 0:
# Generate a batch of images
z = Variable(Tensor(np.random.normal(0, 1, tuple(z_shape))))
gen_mks = generator(z, given_nds, given_eds)
# Score fake images
if multi_gpu:
fake_validity = data_parallel(discriminator, \
(gen_mks, given_nds, \
given_eds, nd_to_sample), \
indices)
else:
fake_validity = discriminator(gen_mks, given_nds, given_eds, nd_to_sample)
#[32, 1]
g_loss = -torch.mean(fake_validity)
if is_mean :
smooth_l1 = torch.nn.SmoothL1Loss(reduction='mean')
else:
smooth_l1 = torch.nn.SmoothL1Loss()
#np.save('./data_debug.npy',[gen_mks,mks, nds, eds, nd_to_sample, ed_to_sample])
if epoch > extra_loss_lim:
###########################iou loss################
#pos:
##common_pen = compute_common_loss(real_mks.data,gen_mks,given_eds,nd_to_sample,ed_to_sample,criterion=BCE_loss)
#neg:
#################################
#########area#####################
##sp = compute_sparsity_penalty(gen_mks,given_eds,nd_to_sample,smooth_l1)
sp = compute_sparsity_penalty_v1(gen_mks,nd_to_sample,smooth_l1)##会修改gen_masks
area_dict = compute_area_norm_penalty(real_mks.data,gen_mks,given_nds,nd_to_sample,smooth_l1)
all_areas_loss = sum(area_dict.values())
##############################
# Update generator
g_loss = g_loss + 4 * sp + 7 * all_areas_loss
##+ common_pen + 7*all_areas_loss
## area_loss_dict = {}
## for k,v in area_dict.items():
## area_loss_dict[k] = float(v.data)
#+ pos_ci_norm + neg_giou_norm
###debug
if torch.isinf(g_loss) :
print("bug data saving")
visualizeBatch(real_mks,gen_mks, given_nds, given_eds, nd_to_sample,ed_to_sample)
print("bug data done")
g_loss.backward()
# for name, parms in generator.named_parameters():
# print('-->name:', name, '-->grad_requirs:',parms.requires_grad, \
# ' -->grad_value:',parms.grad.shape)
optimizer_G.step()
if epoch > extra_loss_lim:
print("[time:%s]\t[Epoch:%d/%d]\t[Batch:%d/%d]\t[Batch_done:%d]\t[D_loss: %f]\t[G_loss: %f]\t[div:%f]\t[sp:%s]\t[area_loss:%f]\t[area_is_grad:%s]\t[area_detail:%s]"#\t[cp:%s]"#\t[pos_ci_loss:%f]\t[ci_grad:%s]\t[neg_giou_loss:%f]\t[neg_giou_grad:%s]\t[pos_giou_loss:%f]\t[all_giou_loss:%f] "
% (str(datetime.now()),epoch, opt.n_epochs, b_idx, len(fp_loader),batches_done, \
d_loss.item(), g_loss.item(),div_loss\
#lambda_gp * gradient_penalty\
,str(sp)\
,float(all_areas_loss.data),str(all_areas_loss.grad_fn),str(area_dict)
#,float(pos_ci_norm.data),str(pos_ci_norm.grad_fn),float(neg_giou_norm.data),str(neg_giou_norm.grad_fn)\
#,float(pos_giou_norm.data),float(all_giou_norm.data)\
#,str(common_pen)\
))
else:
print("[time:%s]\t[Epoch:%d/%d]\t[Batch:%d/%d]\t[Batch_done:%d]\t[D_loss: %f]\t[G_loss: %f]\t[div:%f]"#\t[area_loss:%f]\t[area_is_grad:%s]\t[area_detail:%s]\t[sp:%s]\t[pos_ci_loss:%f]\t[ci_grad:%s]\t[neg_giou_loss:%f]\t[neg_giou_grad:%s]\t[pos_giou_loss:%f]\t[all_giou_loss:%f] "
% (str(datetime.now()),epoch, opt.n_epochs, b_idx, len(fp_loader),batches_done, \
d_loss.item(), g_loss.item(),div_loss\
#lambda_gp * gradient_penalty\
# ,float(all_areas_loss.data),str(all_areas_loss.grad_fn),str(area_dict)\
#,float(pos_ci_norm.data),str(pos_ci_norm.grad_fn),float(neg_giou_norm.data),str(neg_giou_norm.grad_fn)\
#,float(pos_giou_norm.data),float(all_giou_norm.data)\
#,str(sp)
))
#print("batches_done: %s samepe_interval: %s eq_val: %s" % (batches_done,opt.sample_interval,(batches_done % opt.sample_interval == 0) and batches_done))
if (batches_done % opt.sample_interval == 0) and batches_done:
torch.save(generator.state_dict(), './checkpoints/{}_{}.pth'.format(exp_folder, batches_done))
print("checkpoints save done")
visualizeBatch(real_mks,gen_mks, given_nds, given_eds, nd_to_sample,ed_to_sample)
print("training data save done")
visualizeSingleBatch(fp_loader_test, opt)
#print("images save done [valid iou:%f giou:giou_norm]" % (iou_norm,giou_norm))
batches_done += opt.n_critic