-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathmain_TiDE.py
61 lines (48 loc) · 2.23 KB
/
main_TiDE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import argparse
import numpy as np
import random
import torch
import yaml
from lib.util import get_logger_simple
from model.trainer import Runner
def main(args):
fix_seed = 2021
random.seed(fix_seed)
torch.manual_seed(fix_seed)
np.random.seed(fix_seed)
with open(args.config_filename) as f:
config = yaml.safe_load(f)
config['logger'] = logger
if config['train']['is_training']:
total_iter_times = config['train']['itr']
for iter_time in range(total_iter_times):
runner = Runner(iter_time, **config)
logger.info(f'>>>>>>>start training - iter: {iter_time}/{total_iter_times}>>>>>>>>>>>>>>>>>>>>>>>>>>')
runner.train()
logger.info(f'>>>>>>>testing - iter: {iter_time}/{total_iter_times}>>>>>>>>>>>>>>>>>>>>>>>>>>')
runner.test(load_models=False)
if config['train']['do_predict']:
logger.info(f'>>>>>>>predicting - iter: {iter_time}/{total_iter_times}>>>>>>>>>>>>>>>>>>>>>>>>>>')
runner.predict(load_models=True)
torch.cuda.empty_cache()
else:
iter_time = 0
runner = Runner(iter_time, **config)
if config['train']['do_predict']:
logger.info(f'>>>>>>>predicting>>>>>>>>>>>>>>>>>>>>>>>>>>')
runner.predict(load_models=True)
else:
logger.info(f'>>>>>>>testing - iter: {iter_time}>>>>>>>>>>>>>>>>>>>>>>>>>>')
runner.test(load_models=True)
torch.cuda.empty_cache()
if __name__ == '__main__':
# generate parser and args
parser = argparse.ArgumentParser('Baseline-TiDE')
parser.add_argument('--dataset', default='ETTh2', choices=['ETTh1', 'ETTh2', 'ETTm1', 'ETTm2', 'ELEC', 'EXCHANGE',
'TRAFFIC', 'WEATHER', 'ILI'])
args = parser.parse_args()
args.config_filename = f'./config/TiDE/TiDE_{args.dataset}.yaml'
# generate loggers in the specific dir
logger = get_logger_simple('log', f'TiDE_{args.dataset}')
print(f'Baseline:TiDE\t-Dataset:{args.dataset}')
main(args)