forked from google-deepmind/deepmind-research
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcs.py
154 lines (122 loc) · 5.54 KB
/
cs.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright 2019 DeepMind Technologies Limited and Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""GAN modules."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import sonnet as snt
import tensorflow.compat.v1 as tf
from cs_gan import utils
class CS(object):
"""Compressed Sensing Module."""
def __init__(self, metric_net, generator,
num_z_iters, z_step_size, z_project_method):
"""Constructs the module.
Args:
metric_net: the measurement network.
generator: The generator network. A sonnet module. For examples, see
`nets.py`.
num_z_iters: an integer, the number of latent optimisation steps.
z_step_size: an integer, latent optimisation step size.
z_project_method: the method for projecting latent after optimisation,
a string from {'norm', 'clip'}.
"""
self._measure = metric_net
self.generator = generator
self.num_z_iters = num_z_iters
self.z_project_method = z_project_method
self._log_step_size_module = snt.TrainableVariable(
[],
initializers={'w': tf.constant_initializer(math.log(z_step_size))})
self.z_step_size = tf.exp(self._log_step_size_module())
def connect(self, data, generator_inputs):
"""Connects the components and returns the losses, outputs and debug ops.
Args:
data: a `tf.Tensor`: `[batch_size, ...]`. There are no constraints on the
rank
of this tensor, but it has to be compatible with the shapes expected
by the discriminator.
generator_inputs: a `tf.Tensor`: `[g_in_batch_size, ...]`. It does not
have to have the same batch size as the `data` tensor. There are not
constraints on the rank of this tensor, but it has to be compatible
with the shapes the generator network supports as inputs.
Returns:
An `ModelOutputs` instance.
"""
samples, optimised_z = utils.optimise_and_sample(
generator_inputs, self, data, is_training=True)
optimisation_cost = utils.get_optimisation_cost(generator_inputs,
optimised_z)
debug_ops = {}
initial_samples = self.generator(generator_inputs, is_training=True)
generator_loss = tf.reduce_mean(self.gen_loss_fn(data, samples))
# compute the RIP loss
# (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2
# as a triplet loss for 3 pairs of images.
r1 = self._get_rip_loss(samples, initial_samples)
r2 = self._get_rip_loss(samples, data)
r3 = self._get_rip_loss(initial_samples, data)
rip_loss = tf.reduce_mean((r1 + r2 + r3) / 3.0)
total_loss = generator_loss + rip_loss
optimization_components = self._build_optimization_components(
generator_loss=total_loss)
debug_ops['rip_loss'] = rip_loss
debug_ops['recons_loss'] = tf.reduce_mean(
tf.norm(snt.BatchFlatten()(samples)
- snt.BatchFlatten()(data), axis=-1))
debug_ops['z_step_size'] = self.z_step_size
debug_ops['opt_cost'] = optimisation_cost
debug_ops['gen_loss'] = generator_loss
return utils.ModelOutputs(
optimization_components, debug_ops)
def _get_rip_loss(self, img1, img2):
r"""Compute the RIP loss from two images.
The RIP loss: (\sqrt{F(x_1 - x_2)^2} - \sqrt{(x_1 - x_2)^2})^2
Args:
img1: an image (x_1), 4D tensor of shape [batch_size, W, H, C].
img2: an other image (x_2), 4D tensor of shape [batch_size, W, H, C].
"""
m1 = self._measure(img1)
m2 = self._measure(img2)
img_diff_norm = tf.norm(snt.BatchFlatten()(img1)
- snt.BatchFlatten()(img2), axis=-1)
m_diff_norm = tf.norm(m1 - m2, axis=-1)
return tf.square(img_diff_norm - m_diff_norm)
def _get_measurement_error(self, target_img, sample_img):
"""Compute the measurement error of sample images given the targets."""
m_targets = self._measure(target_img)
m_samples = self._measure(sample_img)
return tf.reduce_sum(tf.square(m_targets - m_samples), -1)
def gen_loss_fn(self, data, samples):
"""Generator loss as latent optimisation's error function."""
return self._get_measurement_error(data, samples)
def _build_optimization_components(
self, generator_loss=None, discriminator_loss=None):
"""Create the optimization components for this module."""
metric_vars = _get_and_check_variables(self._measure)
generator_vars = _get_and_check_variables(self.generator)
step_vars = _get_and_check_variables(self._log_step_size_module)
assert discriminator_loss is None
optimization_components = utils.OptimizationComponent(
generator_loss, generator_vars + metric_vars + step_vars)
return optimization_components
def _get_and_check_variables(module):
module_variables = module.get_all_variables()
if not module_variables:
raise ValueError(
'Module {} has no variables! Variables needed for training.'.format(
module.module_name))
# TensorFlow optimizers require lists to be passed in.
return list(module_variables)