forked from math-comp/hierarchy-builder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhierarchy_2.v
146 lines (113 loc) · 3.43 KB
/
hierarchy_2.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
From Coq Require Import ssreflect ssrfun.
From HB Require Import structures.
(**************************************************************************)
(* Stage 2: AddComoid -> +AddAG+ -> Ring *)
(**************************************************************************)
HB.mixin Record AddComoid_of_TYPE A := {
zero : A;
add : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
}.
HB.structure Definition AddComoid := { A of AddComoid_of_TYPE A }.
(* Begin change *)
HB.mixin Record AddAG_of_AddComoid A of AddComoid A := {
opp : A -> A;
addNr : left_inverse zero opp add;
}.
HB.factory Record AddAG_of_TYPE A := {
zero : A;
add : A -> A -> A;
opp : A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
}.
HB.builders Context A (a : AddAG_of_TYPE A).
HB.instance
Definition to_AddComoid_of_TYPE :=
AddComoid_of_TYPE.Build A zero add addrA addrC add0r.
HB.instance
Definition to_AddAG_of_AddComoid :=
AddAG_of_AddComoid.Build A _ addNr.
HB.end.
HB.structure Definition AddAG := { A of AddAG_of_TYPE A }.
HB.mixin Record Ring_of_AddAG A of AddAG A := {
one : A;
mul : A -> A -> A;
mulrA : associative mul;
mulr1 : left_id one mul;
mul1r : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.structure Definition Ring := { A of Ring_of_AddAG A }.
HB.factory Record Ring_of_AddComoid A of AddComoid A := {
opp : A -> A;
one : A;
mul : A -> A -> A;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a : Ring_of_AddComoid A).
HB.instance
Definition to_AddAG_of_AddComoid := AddAG_of_AddComoid.Build A _ addNr.
HB.instance
Definition to_Ring_of_AddAG := Ring_of_AddAG.Build A
_ _ mulrA mul1r mulr1 mulrDl mulrDr.
#[verbose]
HB.end.
(* End change *)
HB.factory Record Ring_of_TYPE A := {
zero : A;
one : A;
add : A -> A -> A;
opp : A -> A;
mul : A -> A -> A;
addrA : associative add;
addrC : commutative add;
add0r : left_id zero add;
addNr : left_inverse zero opp add;
mulrA : associative mul;
mul1r : left_id one mul;
mulr1 : right_id one mul;
mulrDl : left_distributive mul add;
mulrDr : right_distributive mul add;
}.
HB.builders Context A (a : Ring_of_TYPE A).
HB.instance
Definition to_AddComoid_of_TYPE := AddComoid_of_TYPE.Build A
zero add addrA addrC add0r.
HB.instance
Definition to_Ring_of_AddComoid := Ring_of_AddComoid.Build A
_ _ _ addNr mulrA mul1r mulr1 mulrDl mulrDr.
HB.end.
(* Notations *)
Declare Scope hb_scope.
Delimit Scope hb_scope with G.
Local Open Scope hb_scope.
Notation "0" := zero : hb_scope.
Notation "1" := one : hb_scope.
Infix "+" := (@add _) : hb_scope.
Notation "- x" := (@opp _ x) : hb_scope.
Infix "*" := (@mul _) : hb_scope.
Notation "x - y" := (x + - y) : hb_scope.
(* Theory *)
Section Theory.
Variable R : Ring.type.
Implicit Type (x : R).
Lemma addr0 : right_id (@zero R) add.
Proof. by move=> x; rewrite addrC add0r. Qed.
Lemma addrN : right_inverse (@zero R) opp add.
Proof. by move=> x; rewrite addrC addNr. Qed.
Lemma subrr x : x - x = 0.
Proof. by rewrite addrN. Qed.
Lemma addrNK x y : x + y - y = x.
Proof. by rewrite -addrA subrr addr0. Qed.
End Theory.