-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
309 lines (272 loc) · 13.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
#!/usr/bin/env python3
"""
major actions here: fine-tune the features and evaluate different settings
"""
import os
import torch
import warnings
import numpy as np
import random
from random import randint
from time import sleep
import wandb
import src.utils.logging as logging
from src.configs.config import get_cfg
from src.data import loader as data_loader
from src.engine.evaluator import Evaluator
from src.engine.trainer import Trainer
from src.models.build_model import build_model
from src.utils.build_pruner import build_pruner, log_pruned_model_info
from src.utils.file_io import PathManager
from launch import default_argument_parser, logging_train_setup
warnings.filterwarnings("ignore")
def setup(args):
"""
Create configs and perform basic setups.
"""
cfg = get_cfg()
cfg.merge_from_file(args.config_file)
cfg.merge_from_list(args.opts)
# setup output dir
# output_dir / data_name / feature_name / lr_wd / run1
output_dir = cfg.OUTPUT_DIR
lr = cfg.SOLVER.BASE_LR
wd = cfg.SOLVER.WEIGHT_DECAY
bn = cfg.MODEL.ADAPTER.BOTTLENECK_SIZE
output_folder = os.path.join(
cfg.DATA.NAME, cfg.DATA.FEATURE, f"lr{lr}_bn{bn}")
# train cfg.RUN_N_TIMES times
count = 1
while count <= cfg.RUN_N_TIMES:
output_path = os.path.join(output_dir, output_folder, f"run{count}")
# pause for a random time, so concurrent process with same setting won't interfere with each other. # noqa
# sleep(randint(3, 30))
if not PathManager.exists(output_path):
PathManager.mkdirs(output_path)
cfg.OUTPUT_DIR = output_path
break
else:
count += 1
if count > cfg.RUN_N_TIMES:
raise ValueError(
f"Already run {cfg.RUN_N_TIMES} times for {output_folder}, no need to run more")
cfg.freeze()
return cfg
def get_loaders(cfg, logger):
logger.info("Loading training data (final training data for vtab)...")
if cfg.DATA.NAME.startswith("vtab-"):
train_loader = data_loader.construct_trainval_loader(cfg)
else:
train_loader = data_loader.construct_train_loader(cfg)
logger.info("Loading validation data...")
# not really needed for vtab
val_loader = data_loader.construct_val_loader(cfg)
logger.info("Loading test data...")
if cfg.DATA.NO_TEST:
logger.info("...no test data is constructed")
test_loader = None
else:
test_loader = data_loader.construct_test_loader(cfg)
return train_loader, val_loader, test_loader
def train(cfg, args):
# clear up residual cache from previous runs
if torch.cuda.is_available():
torch.cuda.empty_cache()
# main training / eval actions here
# fix the seed for reproducibility
if cfg.SEED is not None:
torch.manual_seed(cfg.SEED)
torch.cuda.manual_seed(cfg.SEED)
torch.cuda.manual_seed_all(cfg.SEED)
np.random.seed(cfg.SEED)
random.seed(cfg.SEED)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# setup training env including loggers
logging_train_setup(args, cfg)
logger = logging.get_logger("MOSA")
if args.use_wandb:
wandb.init(
project='MOSA',
name='{}_{}_{}'.format(cfg.DATA.NAME, cfg.MODEL.TRANSFER_TYPE, cfg.MODEL.HYPER.HYPER),
config=cfg
)
train_loader, val_loader, test_loader = get_loaders(cfg, logger)
logger.info("Constructing models...")
model, cur_device = build_model(cfg)
if args.sparse_train:
logger.info("Constructing pruner...")
pruner = build_pruner(cfg)
# for k, p in model.named_parameters():
# if p.requires_grad:
# print(k, p.shape)
# raise ValueError("stop here")
if args.sparse_train:
logger.info("Pruning model...")
if cfg.MODEL.TYPE == "vit":
if cfg.MODEL.TRANSFER_TYPE == "adapter" or cfg.MODEL.TRANSFER_TYPE == "mosa":
if cfg.MODEL.ADAPTER.MOE:
for blk in model.enc.transformer.encoder.layer:
if cfg.MODEL.ADAPTER.SHARE != "down":
if cfg.MODEL.ADAPTER.STYLE == "AdaptFormer" or cfg.MODEL.ADAPTER.STYLE == "Pfeiffer":
score = pruner.score(blk.adapter_down[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down[i].weight.mask = m
score = pruner.score(blk.adapter_down[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down[i].bias.mask = m
elif cfg.MODEL.ADAPTER.STYLE == "Houlsby":
score = pruner.score(blk.adapter_down_attn[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down_attn[i].weight.mask = m
score = pruner.score(blk.adapter_down_attn[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down_attn[i].bias.mask = m
score = pruner.score(blk.adapter_down_ffn[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down_ffn[i].weight.mask = m
score = pruner.score(blk.adapter_down_ffn[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_down_ffn[i].bias.mask = m
if cfg.MODEL.ADAPTER.SHARE != "up":
if cfg.MODEL.ADAPTER.STYLE == "AdaptFormer" or cfg.MODEL.ADAPTER.STYLE == "Pfeiffer":
score = pruner.score(blk.adapter_up[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up[i].weight.mask = m
score = pruner.score(blk.adapter_up[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up[i].bias.mask = m
elif cfg.MODEL.ADAPTER.STYLE == "Houlsby":
score = pruner.score(blk.adapter_up_attn[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up_attn[i].weight.mask = m
score = pruner.score(blk.adapter_up_attn[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up_attn[i].bias.mask = m
score = pruner.score(blk.adapter_up_ffn[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up_ffn[i].weight.mask = m
score = pruner.score(blk.adapter_up_ffn[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.adapter_up_ffn[i].bias.mask = m
else:
for k, p in model.named_parameters():
if p.requires_grad and "head" not in k:
score = pruner.score(p)
mask = pruner.prune(score)
p.mask = mask
elif cfg.MODEL.TRANSFER_TYPE == "lora" or cfg.MODEL.TRANSFER_TYPE == "mosl":
if cfg.MODEL.LORA.MOE:
for blk in model.enc.transformer.encoder.layer:
if cfg.MODEL.LORA.SHARE != "down":
if "q" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_A_q[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_A_q[i].weight.mask = m
if "k" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_A_k[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_A_k[i].weight.mask = m
if "v" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_A_v[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_A_v[i].weight.mask = m
if "o" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_A_o[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_A_o[i].weight.mask = m
if cfg.MODEL.LORA.SHARE != "up":
if "q" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_B_q[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_B_q[i].weight.mask = m
if "k" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_B_k[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_B_k[i].weight.mask = m
if "v" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_B_v[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_B_v[i].weight.mask = m
if "o" in cfg.MODEL.LORA.MODE:
score = pruner.score(blk.attn.lora_B_o[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.attn.lora_B_o[i].weight.mask = m
else:
for k, p in model.named_parameters():
if p.requires_grad and "head" not in k:
score = pruner.score(p)
mask = pruner.prune(score)
p.mask = mask
elif cfg.MODEL.TYPE == "swin":
if cfg.MODEL.ADAPTER.MOE:
for layer in model.enc.layers:
for blk in layer.blocks:
if cfg.MODEL.ADAPTER.SHARE != "down":
score = pruner.score(blk.mlp.adapter_down[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.mlp.adapter_down[i].weight.mask = m
score = pruner.score(blk.mlp.adapter_down[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.mlp.adapter_down[i].bias.mask = m
if cfg.MODEL.ADAPTER.SHARE != "up":
score = pruner.score(blk.mlp.adapter_up[0].weight)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.mlp.adapter_up[i].weight.mask = m
score = pruner.score(blk.mlp.adapter_up[0].bias)
masks = pruner.divide(score)
for i, m in enumerate(masks):
blk.mlp.adapter_up[i].bias.mask = m
else:
for k, p in model.named_parameters():
if p.requires_grad and "head" not in k:
score = pruner.score(p)
mask = pruner.prune(score)
p.mask = mask
log_pruned_model_info(model, verbose=cfg.DBG)
# for k, p in model.named_parameters():
# if p.requires_grad:
# print(k, p.shape)
# raise ValueError("stop here")
logger.info("Setting up Evalutator...")
evaluator = Evaluator()
logger.info("Setting up Trainer...")
trainer = Trainer(cfg, args, model, evaluator, cur_device)
if train_loader:
trainer.train_classifier(train_loader, val_loader, test_loader)
else:
print("No train loader presented. Exit")
if cfg.SOLVER.TOTAL_EPOCH == 0:
trainer.eval_classifier(test_loader, "test", 0)
def main(args):
"""main function to call from workflow"""
# set up cfg and args
cfg = setup(args)
# Perform training.
train(cfg, args)
if __name__ == '__main__':
args = default_argument_parser().parse_args()
main(args)