-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.cpp
230 lines (217 loc) · 9.63 KB
/
helper.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
//
// helper.cpp
// Project4
// This file contains helper functions for the main file
// Created by Thean Cheat Lim on 3/20/23.
//
#include "helper.hpp"
#include <opencv2/opencv.hpp>
#include <dirent.h>
#include <cstring>
using namespace cv;
using namespace std;
// Do cornerSubPix and SolvePnP at once. Same args as opencv's
int cornerSubPixSolvePnP (Mat &frame, Mat &rvec, Mat &tvec, vector<Vec3f>&worldPoints, vector<Point2f> &imagePoints, Mat &cameraMatrix, Mat &distortionCoefficients, int winSize){
// Improve the detected corners' accuracy
Mat grayScaleFrame;
cvtColor(frame, grayScaleFrame, COLOR_BGR2GRAY);
cornerSubPix(grayScaleFrame, imagePoints, Size(winSize, winSize), Size(-1, -1),
TermCriteria(TermCriteria::EPS + TermCriteria::COUNT, 30, 0.0001));
solvePnP(worldPoints, imagePoints, cameraMatrix, distortionCoefficients, rvec, tvec);
return 0;
}
// Construct pyramids with a roof connecting them and store it at a vector of points
// objectPoints - A vector of points
int constructPyramidRoof(vector<Point3f> &objectPoints){
// First Slanted Pyramid
objectPoints.push_back(Point3f(0, 0, 0)); // origin
objectPoints.push_back(Point3f(2, 0, 0)); // x-> right
objectPoints.push_back(Point3f(0, -2, 0)); // y -> down
objectPoints.push_back(Point3f(2, -1, 3)); // z -> diag on lower right
objectPoints.push_back(Point3f(2, -2, 0)); // diag
// Second Slanted Pyramid
objectPoints.push_back(Point3f(3, -3, 0)); // origin
objectPoints.push_back(Point3f(5, -3, 0)); // x-> right
objectPoints.push_back(Point3f(3, -5, 0)); // y -> down
objectPoints.push_back(Point3f(4, -3, 3)); // z -> diag on upper left
objectPoints.push_back(Point3f(5, -5, 0)); // diag
// Third Slanted Pyramid
objectPoints.push_back(Point3f(6, 0, 0)); // origin
objectPoints.push_back(Point3f(8, 0, 0)); // x-> right
objectPoints.push_back(Point3f(6, -2, 0)); // y -> down
objectPoints.push_back(Point3f(6, -1, 3)); // z -> diag on lower right
objectPoints.push_back(Point3f(8, -2, 0)); // diag
return 0;
}
// Draw pyramids with a roof connecting them onto frame, using imagePoints
// frame - Image frame
// imagePoints - a vector of 2D image plane points
int drawPyramidRoof(Mat &frame, vector<Point2f> &imagePoints){
// Draw the axis on the image
int thickness = 4;
// First Slanted Pyramid
Scalar firstColor =Scalar(235,206,135);
line(frame, imagePoints[0], imagePoints[1], firstColor, thickness);
line(frame, imagePoints[0], imagePoints[2], firstColor, thickness);
line(frame, imagePoints[0], imagePoints[3], firstColor, thickness);
line(frame, imagePoints[1], imagePoints[3], firstColor, thickness);
line(frame, imagePoints[1], imagePoints[4], firstColor, thickness);
line(frame, imagePoints[2], imagePoints[3], firstColor, thickness);
line(frame, imagePoints[2], imagePoints[4], firstColor, thickness);
line(frame, imagePoints[3], imagePoints[4], firstColor, thickness);
// Second Slanted Pyramid
Scalar secondColor = Scalar(114,128,250); // Salmon
line(frame, imagePoints[5], imagePoints[6], secondColor, thickness);
line(frame, imagePoints[5], imagePoints[7], secondColor, thickness);
line(frame, imagePoints[5], imagePoints[8], secondColor, thickness);
line(frame, imagePoints[6], imagePoints[8], secondColor, thickness);
line(frame, imagePoints[6], imagePoints[9], secondColor, thickness);
line(frame, imagePoints[7], imagePoints[8], secondColor, thickness);
line(frame, imagePoints[7], imagePoints[9], secondColor, thickness);
line(frame, imagePoints[8], imagePoints[9], secondColor, thickness);
// Third Slanted Pyramid
Scalar thirdColor =Scalar(140,180,210);
line(frame, imagePoints[10], imagePoints[11], thirdColor, thickness);
line(frame, imagePoints[10], imagePoints[12], thirdColor, thickness);
line(frame, imagePoints[10], imagePoints[13], thirdColor, thickness);
line(frame, imagePoints[11], imagePoints[13], thirdColor, thickness);
line(frame, imagePoints[11], imagePoints[14], thirdColor, thickness);
line(frame, imagePoints[12], imagePoints[13], thirdColor, thickness);
line(frame, imagePoints[12], imagePoints[14], thirdColor, thickness);
line(frame, imagePoints[13], imagePoints[14], thirdColor, thickness);
// Connect the tips of pyramids
vector<Point> trianglePoints;
trianglePoints.push_back(imagePoints[3]);
trianglePoints.push_back(imagePoints[8]);
trianglePoints.push_back(imagePoints[13]);
// Create a vector of vectors of points, where each vector represents a contour
vector<vector<Point>> contours;
contours.push_back(trianglePoints);
// Transparent Top/ Roof
/*https:stackoverflow.com/a/67426795/19481647*/
// draw red filled contour on image background
Mat roof;
frame.copyTo(roof);
drawContours(roof, contours, 0, Scalar(0,128,0) , -1);
//blend with original image
double alpha = 0.5;
addWeighted(frame, alpha, roof, 1-alpha, 0, frame);
return 0;
}
// Construct a Torus and store it at a vector of points
// Also compute a vector of indices and polygon points, which are useful for drawing onto image plane after projection
// objectPoints - A vector of points
// indices - indices; useful for drawing onto image plane after projecting objectPoints
// polygon - polygon; useful for drawing onto image plane after projecting objectPoints
int constructTorus(vector<Point3f> &objectPoints, vector<int> &indices, vector<Point> &polygon){
int major_steps = 10;
int minor_steps = 5;
double major_radius = 1.0;
double minor_radius = 0.75;
Point3f translation(4, -3, 0);
for (int i = 0; i < major_steps; i++) {
double theta = 2 * CV_PI * i / major_steps;
Point3f center(major_radius * cos(theta), major_radius * sin(theta), 0.0);
for (int j = 0; j < minor_steps; j++) {
double phi = 2 * CV_PI * j / minor_steps;
double x = (major_radius + minor_radius * cos(phi)) * cos(theta);
double y = (major_radius + minor_radius * cos(phi)) * sin(theta);
double z = minor_radius * sin(phi);
Point3f point(x, y, z);
objectPoints.push_back(center + point + translation);
}
}
// Define the indices of the points that make up the lines of the torus
for (int i = 0; i < major_steps; i++) {
int start_index = i * minor_steps;
int end_index = ((i + 1) % major_steps) * minor_steps;
for (int j = 0; j < minor_steps; j++) {
int index1 = start_index + j;
int index2 = end_index + j;
int index3 = end_index + (j + 1) % minor_steps;
int index4 = start_index + (j + 1) % minor_steps;
indices.push_back(index1);
indices.push_back(index2);
indices.push_back(index3);
indices.push_back(index4);
}
}
for (auto index : indices) {
Point3f point = objectPoints[index];
Point2f image_point(point.x, point.y); // project to image plane
polygon.push_back(image_point);
}
return 0;
}
// Draw a Torus using imagePoints
// frame - Image frame
// imagePoints - a vector of 2D image plane points
// indices - indices; useful for drawing onto image plane after projecting objectPoints
// polygon - polygon; useful for drawing onto image plane after projecting objectPoints
int drawTorus(Mat &frame, vector<Point2f> &imagePoints, vector<int> &indices, vector<Point> &polygon){
vector<Point> contour;
for (int i = 0; i < indices.size(); i += 4) {
contour.clear();
for (int j = 0; j <4; j++){
contour.push_back(
Point(
imagePoints[indices[i+j]].x,
imagePoints[indices[i+j]].y)
);
}
const Point* pts[1] = {contour.data()};
int npts[] = {(int)contour.size()};
Mat torus;
frame.copyTo(torus);
fillPoly(torus, pts, npts, 1, Scalar(155, 181, 208));
double alpha = 0.5;
addWeighted(frame, 1-alpha, torus, alpha, 0, frame);
}
return 0;
}
// Load Images and Videos from directory
// images - A vector of images
// videos - A vector of videos
// frameCounters - a list of frame counter, useful for keeping track if a video is running out of frames
int readImagesVideosFromDir(vector<Mat> &images,vector<VideoCapture> &videos, vector<int> &frameCounters){
char dirname[] = "assets";
char buffer[256];
DIR *dirp;
struct dirent *dp;
// open the directory
dirp = opendir( dirname );
if( dirp == NULL) {
printf("Cannot open directory %s\n", dirname);
exit(-1);
}
// loop over all the files in the image file listing
while( (dp = readdir(dirp)) != NULL ) {
// check if the file is an image
if(
strstr(dp->d_name, ".jpg") ||
strstr(dp->d_name, ".png") ||
strstr(dp->d_name, ".ppm") ||
strstr(dp->d_name, ".tif")
)
{
// build the overall filename
strcpy(buffer, dirname);
strcat(buffer, "/");
strcat(buffer, dp->d_name);
Mat img = imread(buffer, IMREAD_COLOR);
images.push_back(img);
}
if(
strstr(dp->d_name, ".mp4")
){
// build the overall filename
strcpy(buffer, dirname);
strcat(buffer, "/");
strcat(buffer, dp->d_name);
VideoCapture vid = VideoCapture(buffer);
videos.push_back(vid);
frameCounters.push_back(0);
}
}
return 0;
}