-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
sol1.py
50 lines (38 loc) · 1.21 KB
/
sol1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
"""
Consider all integer combinations of ab for 2 <= a <= 5 and 2 <= b <= 5:
2^2=4, 2^3=8, 2^4=16, 2^5=32
3^2=9, 3^3=27, 3^4=81, 3^5=243
4^2=16, 4^3=64, 4^4=256, 4^5=1024
5^2=25, 5^3=125, 5^4=625, 5^5=3125
If they are then placed in numerical order, with any repeats removed, we get
the following sequence of 15 distinct terms:
4, 8, 9, 16, 25, 27, 32, 64, 81, 125, 243, 256, 625, 1024, 3125
How many distinct terms are in the sequence generated by ab
for 2 <= a <= 100 and 2 <= b <= 100?
"""
def solution(n: int = 100) -> int:
"""Returns the number of distinct terms in the sequence generated by a^b
for 2 <= a <= 100 and 2 <= b <= 100.
>>> solution(100)
9183
>>> solution(50)
2184
>>> solution(20)
324
>>> solution(5)
15
>>> solution(2)
1
>>> solution(1)
0
"""
collect_powers = set()
current_pow = 0
n = n + 1 # maximum limit
for a in range(2, n):
for b in range(2, n):
current_pow = a**b # calculates the current power
collect_powers.add(current_pow) # adds the result to the set
return len(collect_powers)
if __name__ == "__main__":
print("Number of terms ", solution(int(str(input()).strip())))