-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
trapezoidal_rule.py
105 lines (87 loc) · 2.45 KB
/
trapezoidal_rule.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Numerical integration or quadrature for a smooth function f with known values at x_i
"""
def trapezoidal_rule(boundary, steps):
"""
Implements the extended trapezoidal rule for numerical integration.
The function f(x) is provided below.
:param boundary: List containing the lower and upper bounds of integration [a, b]
:param steps: The number of steps (intervals) used in the approximation
:return: The numerical approximation of the integral
>>> abs(trapezoidal_rule([0, 1], 10) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 1], 100) - 0.33333) < 0.01
True
>>> abs(trapezoidal_rule([0, 2], 1000) - 2.66667) < 0.01
True
>>> abs(trapezoidal_rule([1, 2], 1000) - 2.33333) < 0.01
True
"""
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = make_points(a, b, h)
y = 0.0
y += (h / 2.0) * f(a)
for i in x_i:
y += h * f(i)
y += (h / 2.0) * f(b)
return y
def make_points(a, b, h):
"""
Generates points between a and b with step size h for trapezoidal integration.
:param a: The lower bound of integration
:param b: The upper bound of integration
:param h: The step size
:yield: The next x-value in the range (a, b)
>>> list(make_points(0, 1, 0.1)) # doctest: +NORMALIZE_WHITESPACE
[0.1, 0.2, 0.30000000000000004, 0.4, 0.5, 0.6, 0.7, 0.7999999999999999, \
0.8999999999999999]
>>> list(make_points(0, 10, 2.5))
[2.5, 5.0, 7.5]
>>> list(make_points(0, 10, 2))
[2, 4, 6, 8]
>>> list(make_points(1, 21, 5))
[6, 11, 16]
>>> list(make_points(1, 5, 2))
[3]
>>> list(make_points(1, 4, 3))
[]
"""
x = a + h
while x <= (b - h):
yield x
x += h
def f(x):
"""
This is the function to integrate, f(x) = (x - 0)^2 = x^2.
:param x: The input value
:return: The value of f(x)
>>> f(0)
0
>>> f(1)
1
>>> f(0.5)
0.25
"""
return x**2
def main():
"""
Main function to test the trapezoidal rule.
:a: Lower bound of integration
:b: Upper bound of integration
:steps: define number of steps or resolution
:boundary: define boundary of integration
>>> main()
y = 0.3349999999999999
"""
a = 0.0
b = 1.0
steps = 10.0
boundary = [a, b]
y = trapezoidal_rule(boundary, steps)
print(f"y = {y}")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()