-
-
Notifications
You must be signed in to change notification settings - Fork 46.2k
/
Copy pathprimelib.py
841 lines (633 loc) · 19.8 KB
/
primelib.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
"""
Created on Thu Oct 5 16:44:23 2017
@author: Christian Bender
This Python library contains some useful functions to deal with
prime numbers and whole numbers.
Overview:
is_prime(number)
sieve_er(N)
get_prime_numbers(N)
prime_factorization(number)
greatest_prime_factor(number)
smallest_prime_factor(number)
get_prime(n)
get_primes_between(pNumber1, pNumber2)
----
is_even(number)
is_odd(number)
kg_v(number1, number2) // least common multiple
get_divisors(number) // all divisors of 'number' inclusive 1, number
is_perfect_number(number)
NEW-FUNCTIONS
simplify_fraction(numerator, denominator)
factorial (n) // n!
fib (n) // calculate the n-th fibonacci term.
-----
goldbach(number) // Goldbach's assumption
"""
from math import sqrt
from maths.greatest_common_divisor import gcd_by_iterative
def is_prime(number: int) -> bool:
"""
input: positive integer 'number'
returns true if 'number' is prime otherwise false.
>>> is_prime(3)
True
>>> is_prime(10)
False
>>> is_prime(97)
True
>>> is_prime(9991)
False
>>> is_prime(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
>>> is_prime("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
"""
# precondition
assert isinstance(number, int) and (number >= 0), (
"'number' must been an int and positive"
)
status = True
# 0 and 1 are none primes.
if number <= 1:
status = False
for divisor in range(2, int(round(sqrt(number))) + 1):
# if 'number' divisible by 'divisor' then sets 'status'
# of false and break up the loop.
if number % divisor == 0:
status = False
break
# precondition
assert isinstance(status, bool), "'status' must been from type bool"
return status
# ------------------------------------------
def sieve_er(n):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N.
This function implements the algorithm called
sieve of erathostenes.
>>> sieve_er(8)
[2, 3, 5, 7]
>>> sieve_er(-1)
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
>>> sieve_er("test")
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
"""
# precondition
assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
# beginList: contains all natural numbers from 2 up to N
begin_list = list(range(2, n + 1))
ans = [] # this list will be returns.
# actual sieve of erathostenes
for i in range(len(begin_list)):
for j in range(i + 1, len(begin_list)):
if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0):
begin_list[j] = 0
# filters actual prime numbers.
ans = [x for x in begin_list if x != 0]
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans
# --------------------------------
def get_prime_numbers(n):
"""
input: positive integer 'N' > 2
returns a list of prime numbers from 2 up to N (inclusive)
This function is more efficient as function 'sieveEr(...)'
>>> get_prime_numbers(8)
[2, 3, 5, 7]
>>> get_prime_numbers(-1)
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
>>> get_prime_numbers("test")
Traceback (most recent call last):
...
AssertionError: 'N' must been an int and > 2
"""
# precondition
assert isinstance(n, int) and (n > 2), "'N' must been an int and > 2"
ans = []
# iterates over all numbers between 2 up to N+1
# if a number is prime then appends to list 'ans'
for number in range(2, n + 1):
if is_prime(number):
ans.append(number)
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans
# -----------------------------------------
def prime_factorization(number):
"""
input: positive integer 'number'
returns a list of the prime number factors of 'number'
>>> prime_factorization(0)
[0]
>>> prime_factorization(8)
[2, 2, 2]
>>> prime_factorization(287)
[7, 41]
>>> prime_factorization(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> prime_factorization("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
"""
# precondition
assert isinstance(number, int) and number >= 0, "'number' must been an int and >= 0"
ans = [] # this list will be returns of the function.
# potential prime number factors.
factor = 2
quotient = number
if number in {0, 1}:
ans.append(number)
# if 'number' not prime then builds the prime factorization of 'number'
elif not is_prime(number):
while quotient != 1:
if is_prime(factor) and (quotient % factor == 0):
ans.append(factor)
quotient /= factor
else:
factor += 1
else:
ans.append(number)
# precondition
assert isinstance(ans, list), "'ans' must been from type list"
return ans
# -----------------------------------------
def greatest_prime_factor(number):
"""
input: positive integer 'number' >= 0
returns the greatest prime number factor of 'number'
>>> greatest_prime_factor(0)
0
>>> greatest_prime_factor(8)
2
>>> greatest_prime_factor(287)
41
>>> greatest_prime_factor(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> greatest_prime_factor("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
"""
# precondition
assert isinstance(number, int) and (number >= 0), (
"'number' must been an int and >= 0"
)
ans = 0
# prime factorization of 'number'
prime_factors = prime_factorization(number)
ans = max(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
return ans
# ----------------------------------------------
def smallest_prime_factor(number):
"""
input: integer 'number' >= 0
returns the smallest prime number factor of 'number'
>>> smallest_prime_factor(0)
0
>>> smallest_prime_factor(8)
2
>>> smallest_prime_factor(287)
7
>>> smallest_prime_factor(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
>>> smallest_prime_factor("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 0
"""
# precondition
assert isinstance(number, int) and (number >= 0), (
"'number' must been an int and >= 0"
)
ans = 0
# prime factorization of 'number'
prime_factors = prime_factorization(number)
ans = min(prime_factors)
# precondition
assert isinstance(ans, int), "'ans' must been from type int"
return ans
# ----------------------
def is_even(number):
"""
input: integer 'number'
returns true if 'number' is even, otherwise false.
>>> is_even(0)
True
>>> is_even(8)
True
>>> is_even(287)
False
>>> is_even(-1)
False
>>> is_even("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 == 0, bool), "compare must been from type bool"
return number % 2 == 0
# ------------------------
def is_odd(number):
"""
input: integer 'number'
returns true if 'number' is odd, otherwise false.
>>> is_odd(0)
False
>>> is_odd(8)
False
>>> is_odd(287)
True
>>> is_odd(-1)
True
>>> is_odd("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int
"""
# precondition
assert isinstance(number, int), "'number' must been an int"
assert isinstance(number % 2 != 0, bool), "compare must been from type bool"
return number % 2 != 0
# ------------------------
def goldbach(number):
"""
Goldbach's assumption
input: a even positive integer 'number' > 2
returns a list of two prime numbers whose sum is equal to 'number'
>>> goldbach(8)
[3, 5]
>>> goldbach(824)
[3, 821]
>>> goldbach(0)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
>>> goldbach(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
>>> goldbach("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int, even and > 2
"""
# precondition
assert isinstance(number, int) and (number > 2) and is_even(number), (
"'number' must been an int, even and > 2"
)
ans = [] # this list will returned
# creates a list of prime numbers between 2 up to 'number'
prime_numbers = get_prime_numbers(number)
len_pn = len(prime_numbers)
# run variable for while-loops.
i = 0
j = None
# exit variable. for break up the loops
loop = True
while i < len_pn and loop:
j = i + 1
while j < len_pn and loop:
if prime_numbers[i] + prime_numbers[j] == number:
loop = False
ans.append(prime_numbers[i])
ans.append(prime_numbers[j])
j += 1
i += 1
# precondition
assert (
isinstance(ans, list)
and (len(ans) == 2)
and (ans[0] + ans[1] == number)
and is_prime(ans[0])
and is_prime(ans[1])
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
return ans
# ----------------------------------------------
def kg_v(number1, number2):
"""
Least common multiple
input: two positive integer 'number1' and 'number2'
returns the least common multiple of 'number1' and 'number2'
>>> kg_v(8,10)
40
>>> kg_v(824,67)
55208
>>> kg_v(1, 10)
10
>>> kg_v(0)
Traceback (most recent call last):
...
TypeError: kg_v() missing 1 required positional argument: 'number2'
>>> kg_v(10,-1)
Traceback (most recent call last):
...
AssertionError: 'number1' and 'number2' must been positive integer.
>>> kg_v("test","test2")
Traceback (most recent call last):
...
AssertionError: 'number1' and 'number2' must been positive integer.
"""
# precondition
assert (
isinstance(number1, int)
and isinstance(number2, int)
and (number1 >= 1)
and (number2 >= 1)
), "'number1' and 'number2' must been positive integer."
ans = 1 # actual answer that will be return.
# for kgV (x,1)
if number1 > 1 and number2 > 1:
# builds the prime factorization of 'number1' and 'number2'
prime_fac_1 = prime_factorization(number1)
prime_fac_2 = prime_factorization(number2)
elif number1 == 1 or number2 == 1:
prime_fac_1 = []
prime_fac_2 = []
ans = max(number1, number2)
count1 = 0
count2 = 0
done = [] # captured numbers int both 'primeFac1' and 'primeFac2'
# iterates through primeFac1
for n in prime_fac_1:
if n not in done:
if n in prime_fac_2:
count1 = prime_fac_1.count(n)
count2 = prime_fac_2.count(n)
for _ in range(max(count1, count2)):
ans *= n
else:
count1 = prime_fac_1.count(n)
for _ in range(count1):
ans *= n
done.append(n)
# iterates through primeFac2
for n in prime_fac_2:
if n not in done:
count2 = prime_fac_2.count(n)
for _ in range(count2):
ans *= n
done.append(n)
# precondition
assert isinstance(ans, int) and (ans >= 0), (
"'ans' must been from type int and positive"
)
return ans
# ----------------------------------
def get_prime(n):
"""
Gets the n-th prime number.
input: positive integer 'n' >= 0
returns the n-th prime number, beginning at index 0
>>> get_prime(0)
2
>>> get_prime(8)
23
>>> get_prime(824)
6337
>>> get_prime(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been a positive int
>>> get_prime("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been a positive int
"""
# precondition
assert isinstance(n, int) and (n >= 0), "'number' must been a positive int"
index = 0
ans = 2 # this variable holds the answer
while index < n:
index += 1
ans += 1 # counts to the next number
# if ans not prime then
# runs to the next prime number.
while not is_prime(ans):
ans += 1
# precondition
assert isinstance(ans, int) and is_prime(ans), (
"'ans' must been a prime number and from type int"
)
return ans
# ---------------------------------------------------
def get_primes_between(p_number_1, p_number_2):
"""
input: prime numbers 'pNumber1' and 'pNumber2'
pNumber1 < pNumber2
returns a list of all prime numbers between 'pNumber1' (exclusive)
and 'pNumber2' (exclusive)
>>> get_primes_between(3, 67)
[5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61]
>>> get_primes_between(0)
Traceback (most recent call last):
...
TypeError: get_primes_between() missing 1 required positional argument: 'p_number_2'
>>> get_primes_between(0, 1)
Traceback (most recent call last):
...
AssertionError: The arguments must been prime numbers and 'pNumber1' < 'pNumber2'
>>> get_primes_between(-1, 3)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
>>> get_primes_between("test","test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and positive
"""
# precondition
assert (
is_prime(p_number_1) and is_prime(p_number_2) and (p_number_1 < p_number_2)
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
number = p_number_1 + 1 # jump to the next number
ans = [] # this list will be returns.
# if number is not prime then
# fetch the next prime number.
while not is_prime(number):
number += 1
while number < p_number_2:
ans.append(number)
number += 1
# fetch the next prime number.
while not is_prime(number):
number += 1
# precondition
assert (
isinstance(ans, list)
and ans[0] != p_number_1
and ans[len(ans) - 1] != p_number_2
), "'ans' must been a list without the arguments"
# 'ans' contains not 'pNumber1' and 'pNumber2' !
return ans
# ----------------------------------------------------
def get_divisors(n):
"""
input: positive integer 'n' >= 1
returns all divisors of n (inclusive 1 and 'n')
>>> get_divisors(8)
[1, 2, 4, 8]
>>> get_divisors(824)
[1, 2, 4, 8, 103, 206, 412, 824]
>>> get_divisors(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been int and >= 1
>>> get_divisors("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been int and >= 1
"""
# precondition
assert isinstance(n, int) and (n >= 1), "'n' must been int and >= 1"
ans = [] # will be returned.
for divisor in range(1, n + 1):
if n % divisor == 0:
ans.append(divisor)
# precondition
assert ans[0] == 1 and ans[len(ans) - 1] == n, "Error in function getDivisiors(...)"
return ans
# ----------------------------------------------------
def is_perfect_number(number):
"""
input: positive integer 'number' > 1
returns true if 'number' is a perfect number otherwise false.
>>> is_perfect_number(28)
True
>>> is_perfect_number(824)
False
>>> is_perfect_number(-1)
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 1
>>> is_perfect_number("test")
Traceback (most recent call last):
...
AssertionError: 'number' must been an int and >= 1
"""
# precondition
assert isinstance(number, int) and (number > 1), (
"'number' must been an int and >= 1"
)
divisors = get_divisors(number)
# precondition
assert (
isinstance(divisors, list)
and (divisors[0] == 1)
and (divisors[len(divisors) - 1] == number)
), "Error in help-function getDivisiors(...)"
# summed all divisors up to 'number' (exclusive), hence [:-1]
return sum(divisors[:-1]) == number
# ------------------------------------------------------------
def simplify_fraction(numerator, denominator):
"""
input: two integer 'numerator' and 'denominator'
assumes: 'denominator' != 0
returns: a tuple with simplify numerator and denominator.
>>> simplify_fraction(10, 20)
(1, 2)
>>> simplify_fraction(10, -1)
(10, -1)
>>> simplify_fraction("test","test")
Traceback (most recent call last):
...
AssertionError: The arguments must been from type int and 'denominator' != 0
"""
# precondition
assert (
isinstance(numerator, int)
and isinstance(denominator, int)
and (denominator != 0)
), "The arguments must been from type int and 'denominator' != 0"
# build the greatest common divisor of numerator and denominator.
gcd_of_fraction = gcd_by_iterative(abs(numerator), abs(denominator))
# precondition
assert (
isinstance(gcd_of_fraction, int)
and (numerator % gcd_of_fraction == 0)
and (denominator % gcd_of_fraction == 0)
), "Error in function gcd_by_iterative(...,...)"
return (numerator // gcd_of_fraction, denominator // gcd_of_fraction)
# -----------------------------------------------------------------
def factorial(n):
"""
input: positive integer 'n'
returns the factorial of 'n' (n!)
>>> factorial(0)
1
>>> factorial(20)
2432902008176640000
>>> factorial(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been a int and >= 0
>>> factorial("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been a int and >= 0
"""
# precondition
assert isinstance(n, int) and (n >= 0), "'n' must been a int and >= 0"
ans = 1 # this will be return.
for factor in range(1, n + 1):
ans *= factor
return ans
# -------------------------------------------------------------------
def fib(n: int) -> int:
"""
input: positive integer 'n'
returns the n-th fibonacci term , indexing by 0
>>> fib(0)
1
>>> fib(5)
8
>>> fib(20)
10946
>>> fib(99)
354224848179261915075
>>> fib(-1)
Traceback (most recent call last):
...
AssertionError: 'n' must been an int and >= 0
>>> fib("test")
Traceback (most recent call last):
...
AssertionError: 'n' must been an int and >= 0
"""
# precondition
assert isinstance(n, int) and (n >= 0), "'n' must been an int and >= 0"
tmp = 0
fib1 = 1
ans = 1 # this will be return
for _ in range(n - 1):
tmp = ans
ans += fib1
fib1 = tmp
return ans
if __name__ == "__main__":
import doctest
doctest.testmod()