-
-
Notifications
You must be signed in to change notification settings - Fork 46.2k
/
Copy pathlinear_regression.py
139 lines (114 loc) · 4.6 KB
/
linear_regression.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Linear regression is the most basic type of regression commonly used for
predictive analysis. The idea is pretty simple: we have a dataset and we have
features associated with it. Features should be chosen very cautiously
as they determine how much our model will be able to make future predictions.
We try to set the weight of these features, over many iterations, so that they best
fit our dataset. In this particular code, I had used a CSGO dataset (ADR vs
Rating). We try to best fit a line through dataset and estimate the parameters.
"""
import numpy as np
import requests
def collect_dataset():
"""Collect dataset of CSGO
The dataset contains ADR vs Rating of a Player
:return : dataset obtained from the link, as matrix
"""
response = requests.get(
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/"
"master/Week1/ADRvsRating.csv",
timeout=10,
)
lines = response.text.splitlines()
data = []
for item in lines:
item = item.split(",")
data.append(item)
data.pop(0) # This is for removing the labels from the list
dataset = np.matrix(data)
return dataset
def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
"""Run steep gradient descent and updates the Feature vector accordingly_
:param data_x : contains the dataset
:param data_y : contains the output associated with each data-entry
:param len_data : length of the data_
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
>>> import numpy as np
>>> data_x = np.array([[1, 2], [3, 4]])
>>> data_y = np.array([5, 6])
>>> len_data = len(data_x)
>>> alpha = 0.01
>>> theta = np.array([0.1, 0.2])
>>> run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
array([0.196, 0.343])
"""
n = len_data
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_grad = np.dot(prod, data_x)
theta = theta - (alpha / n) * sum_grad
return theta
def sum_of_square_error(data_x, data_y, len_data, theta):
"""Return sum of square error for error calculation
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's
Example:
>>> vc_x = np.array([[1.1], [2.1], [3.1]])
>>> vc_y = np.array([1.2, 2.2, 3.2])
>>> round(sum_of_square_error(vc_x, vc_y, 3, np.array([1])),3)
np.float64(0.005)
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_elem = np.sum(np.square(prod))
error = sum_elem / (2 * len_data)
return error
def run_linear_regression(data_x, data_y):
"""Implement Linear regression over the dataset
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:return : feature for line of best fit (Feature vector)
"""
iterations = 100000
alpha = 0.0001550
no_features = data_x.shape[1]
len_data = data_x.shape[0] - 1
theta = np.zeros((1, no_features))
for i in range(iterations):
theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
error = sum_of_square_error(data_x, data_y, len_data, theta)
print(f"At Iteration {i + 1} - Error is {error:.5f}")
return theta
def mean_absolute_error(predicted_y, original_y):
"""Return sum of square error for error calculation
:param predicted_y : contains the output of prediction (result vector)
:param original_y : contains values of expected outcome
:return : mean absolute error computed from given feature's
>>> predicted_y = [3, -0.5, 2, 7]
>>> original_y = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(predicted_y, original_y)
0.5
"""
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
return total / len(original_y)
def main():
"""Driver function"""
data = collect_dataset()
len_data = data.shape[0]
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
data_y = data[:, -1].astype(float)
theta = run_linear_regression(data_x, data_y)
len_result = theta.shape[1]
print("Resultant Feature vector : ")
for i in range(len_result):
print(f"{theta[0, i]:.5f}")
if __name__ == "__main__":
import doctest
doctest.testmod()
main()