-
-
Notifications
You must be signed in to change notification settings - Fork 46.1k
/
symmetric_tree.py
159 lines (128 loc) · 3.55 KB
/
symmetric_tree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
"""
Given the root of a binary tree, check whether it is a mirror of itself
(i.e., symmetric around its center).
Leetcode reference: https://leetcode.com/problems/symmetric-tree/
"""
from __future__ import annotations
from dataclasses import dataclass
@dataclass
class Node:
"""
A Node represents an element of a binary tree, which contains:
Attributes:
data: The value stored in the node (int).
left: Pointer to the left child node (Node or None).
right: Pointer to the right child node (Node or None).
Example:
>>> node = Node(1, Node(2), Node(3))
>>> node.data
1
>>> node.left.data
2
>>> node.right.data
3
"""
data: int
left: Node | None = None
right: Node | None = None
def make_symmetric_tree() -> Node:
r"""
Create a symmetric tree for testing.
The tree looks like this:
1
/ \
2 2
/ \ / \
3 4 4 3
Returns:
Node: Root node of a symmetric tree.
Example:
>>> tree = make_symmetric_tree()
>>> tree.data
1
>>> tree.left.data == tree.right.data
True
>>> tree.left.left.data == tree.right.right.data
True
"""
root = Node(1)
root.left = Node(2)
root.right = Node(2)
root.left.left = Node(3)
root.left.right = Node(4)
root.right.left = Node(4)
root.right.right = Node(3)
return root
def make_asymmetric_tree() -> Node:
r"""
Create an asymmetric tree for testing.
The tree looks like this:
1
/ \
2 2
/ \ / \
3 4 3 4
Returns:
Node: Root node of an asymmetric tree.
Example:
>>> tree = make_asymmetric_tree()
>>> tree.data
1
>>> tree.left.data == tree.right.data
True
>>> tree.left.left.data == tree.right.right.data
False
"""
root = Node(1)
root.left = Node(2)
root.right = Node(2)
root.left.left = Node(3)
root.left.right = Node(4)
root.right.left = Node(3)
root.right.right = Node(4)
return root
def is_symmetric_tree(tree: Node) -> bool:
"""
Check if a binary tree is symmetric (i.e., a mirror of itself).
Parameters:
tree: The root node of the binary tree.
Returns:
bool: True if the tree is symmetric, False otherwise.
Example:
>>> is_symmetric_tree(make_symmetric_tree())
True
>>> is_symmetric_tree(make_asymmetric_tree())
False
"""
if tree:
return is_mirror(tree.left, tree.right)
return True # An empty tree is considered symmetric.
def is_mirror(left: Node | None, right: Node | None) -> bool:
"""
Check if two subtrees are mirror images of each other.
Parameters:
left: The root node of the left subtree.
right: The root node of the right subtree.
Returns:
bool: True if the two subtrees are mirrors of each other, False otherwise.
Example:
>>> tree1 = make_symmetric_tree()
>>> is_mirror(tree1.left, tree1.right)
True
>>> tree2 = make_asymmetric_tree()
>>> is_mirror(tree2.left, tree2.right)
False
"""
if left is None and right is None:
# Both sides are empty, which is symmetric.
return True
if left is None or right is None:
# One side is empty while the other is not, which is not symmetric.
return False
if left.data == right.data:
# The values match, so check the subtrees recursively.
return is_mirror(left.left, right.right) and is_mirror(left.right, right.left)
return False
if __name__ == "__main__":
from doctest import testmod
testmod()