From da4ad657493b806820a9d8a2da17f3f9f565472a Mon Sep 17 00:00:00 2001 From: Luiz Felipe Schulz Coria Date: Wed, 13 Nov 2024 21:26:09 -0300 Subject: [PATCH] Create sublinear_search.c --- searching/sublinear_search.c | 115 +++++++++++++++++++++++++++++++++++ 1 file changed, 115 insertions(+) create mode 100644 searching/sublinear_search.c diff --git a/searching/sublinear_search.c b/searching/sublinear_search.c new file mode 100644 index 0000000000..920ee1f196 --- /dev/null +++ b/searching/sublinear_search.c @@ -0,0 +1,115 @@ +/** + * @file + * @brief Program to perform a "sublinear search" of a target + * value in a given *sorted* array by skipping elements. + * @authors [Your Name] - iterative and recursive algorithms + */ + +#include +#include +#include + +/** Recursive implementation + * \param[in] arr array to search + * \param[in] l left index of search range + * \param[in] r right index of search range + * \param[in] x target value to search for + * \param[in] step_size the size of steps to skip in each search iteration + * \returns location of x assuming array arr[l..r] is present + * \returns -1 otherwise + */ +int sublinear_search_recursive(const int *arr, int l, int r, int x, int step_size) +{ + if (l > r) { + return -1; // Element is not present in array + } + + int mid = l + step_size; + + // Check if we've found the element + if (mid > r) { + return -1; // Exceeded range without finding the element + } else if (arr[mid] == x) { + return mid; // Element found + } else if (arr[mid] > x) { + // If element at mid is greater than x, search the remaining part from l to mid - 1 + return sublinear_search_recursive(arr, l, mid - 1, x, 1); + } else { + // Else continue with a larger step from mid + step_size to r + return sublinear_search_recursive(arr, mid + 1, r, x, step_size); + } +} + +/** Iterative implementation + * \param[in] arr array to search + * \param[in] n length of the array + * \param[in] x target value to search for + * \param[in] step_size the size of steps to skip in each search iteration + * \returns location of x assuming array arr is present + * \returns -1 otherwise + */ +int sublinear_search_iterative(const int *arr, int n, int x, int step_size) +{ + int i = 0; + + // Traverse the array in steps of step_size + while (i < n) { + // Check if element is found at current position + if (arr[i] == x) { + return i; + } + // If the current element is greater than x, do a linear search backwards + if (arr[i] > x) { + for (int j = i - step_size + 1; j < i; j++) { + if (j >= 0 && arr[j] == x) { + return j; + } + } + return -1; // Element not found + } + // Move to the next step + i += step_size; + } + + // Check the last block linearly + for (int j = i - step_size + 1; j < n; j++) { + if (arr[j] == x) { + return j; + } + } + + return -1; // Element is not present in array +} + +/** Test implementations */ +void test() +{ + int arr[] = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19}; + int n = sizeof(arr) / sizeof(arr[0]); + int step_size = sqrt(n); // Choosing a step size based on array size + + printf("Test 1.... "); + int x = 7; + int result = sublinear_search_recursive(arr, 0, n - 1, x, step_size); + assert(result == 3); + printf("passed recursive... "); + result = sublinear_search_iterative(arr, n, x, step_size); + assert(result == 3); + printf("passed iterative...\n"); + + printf("Test 2.... "); + x = 8; // Element not in array + result = sublinear_search_recursive(arr, 0, n - 1, x, step_size); + assert(result == -1); + printf("passed recursive... "); + result = sublinear_search_iterative(arr, n, x, step_size); + assert(result == -1); + printf("passed iterative...\n"); +} + +/** Main function */ +int main(void) +{ + test(); + return 0; +}