forked from timoschick/pet
-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathcli.py
318 lines (281 loc) · 11.9 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This script can be used to train and evaluate either a regular supervised model or a PET/iPET model on
one of the supported tasks and datasets.
"""
import json
import os
from typing import Tuple
import warnings
import torch
import wandb
from knockknock import slack_sender
import log
import pet
from pet.argparsing import parser
from pet.tasks import PROCESSORS, load_examples, UNLABELED_SET, TRAIN_SET, DEV_SET, TEST_SET, METRICS, DEFAULT_METRICS
from pet.utils import eq_div
from pet.wrapper import SEQUENCE_CLASSIFIER_WRAPPER, WrapperConfig
logger = log.get_logger("root")
webhook_url = open("slack_webhook.txt").read()
def load_pet_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]:
"""
Load the model, training and evaluation configs for PET from the given command line arguments.
"""
model_cfg = WrapperConfig(
model_type=args.model_type,
model_name_or_path=args.model_name_or_path,
wrapper_type=args.wrapper_type,
task_name=args.task_name,
label_list=args.label_list,
max_seq_length=args.pet_max_seq_length,
verbalizer_file=args.verbalizer_file,
cache_dir=args.cache_dir,
)
train_cfg = pet.TrainConfig(
device=args.device,
per_gpu_train_batch_size=args.pet_per_gpu_train_batch_size,
per_gpu_unlabeled_batch_size=args.pet_per_gpu_unlabeled_batch_size,
n_gpu=args.n_gpu,
num_train_epochs=args.pet_num_train_epochs,
max_steps=args.pet_max_steps,
min_steps=args.pet_min_steps,
gradient_accumulation_steps=args.pet_gradient_accumulation_steps,
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
adam_epsilon=args.adam_epsilon,
warmup_steps=args.warmup_steps,
max_grad_norm=args.max_grad_norm,
lm_training=args.lm_training,
logging_steps=args.logging_steps,
logging_number=args.logging_number,
alpha=args.alpha,
local_rank=args.local_rank,
)
eval_cfg = pet.EvalConfig(
device=args.device,
n_gpu=args.n_gpu,
metrics=args.metrics,
per_gpu_eval_batch_size=args.pet_per_gpu_eval_batch_size,
decoding_strategy=args.decoding_strategy,
priming=args.priming,
local_rank=args.local_rank,
)
return model_cfg, train_cfg, eval_cfg
def load_sequence_classifier_configs(args) -> Tuple[WrapperConfig, pet.TrainConfig, pet.EvalConfig]:
"""
Load the model, training and evaluation configs for a regular sequence classifier from the given command line
arguments. This classifier can either be used as a standalone model or as the final classifier for PET/iPET.
"""
model_cfg = WrapperConfig(
model_type=args.model_type,
model_name_or_path=args.model_name_or_path,
wrapper_type=SEQUENCE_CLASSIFIER_WRAPPER,
task_name=args.task_name,
label_list=args.label_list,
max_seq_length=args.sc_max_seq_length,
verbalizer_file=args.verbalizer_file,
cache_dir=args.cache_dir,
)
train_cfg = pet.TrainConfig(
device=args.device,
per_gpu_train_batch_size=args.sc_per_gpu_train_batch_size,
per_gpu_unlabeled_batch_size=args.sc_per_gpu_unlabeled_batch_size,
n_gpu=args.n_gpu,
num_train_epochs=args.sc_num_train_epochs,
max_steps=args.sc_max_steps,
min_steps=args.sc_min_steps,
temperature=args.temperature,
gradient_accumulation_steps=args.sc_gradient_accumulation_steps,
weight_decay=args.weight_decay,
learning_rate=args.learning_rate,
adam_epsilon=args.adam_epsilon,
warmup_steps=args.warmup_steps,
logging_steps=args.logging_steps,
logging_number=args.logging_number,
max_grad_norm=args.max_grad_norm,
use_logits=args.method != "sequence_classifier",
local_rank=args.local_rank,
)
eval_cfg = pet.EvalConfig(
device=args.device,
n_gpu=args.n_gpu,
metrics=args.metrics,
per_gpu_eval_batch_size=args.sc_per_gpu_eval_batch_size,
local_rank=args.local_rank,
)
return model_cfg, train_cfg, eval_cfg
def load_ipet_config(args) -> pet.IPetConfig:
"""
Load the iPET config from the given command line arguments.
"""
ipet_cfg = pet.IPetConfig(
generations=args.ipet_generations,
logits_percentage=args.ipet_logits_percentage,
scale_factor=args.ipet_scale_factor,
n_most_likely=args.ipet_n_most_likely,
)
return ipet_cfg
@slack_sender(webhook_url=webhook_url, channel="Teven")
def main():
args = parser.parse_args()
logger.info("Parameters: {}".format(args))
# Setup CUDA, GPU & distributed training
if args.local_rank != -1:
args.n_gpu = 1
args.device = args.local_rank if torch.cuda.is_available() and not args.no_cuda else "cpu"
else:
args.n_gpu = torch.cuda.device_count()
args.device = "cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu"
# Prepare task
args.task_name = args.task_name.lower()
if args.task_name not in PROCESSORS:
raise ValueError("Task '{}' not found".format(args.task_name))
if args.verbalizer_file is not None:
args.verbalizer_file = args.verbalizer_file.replace("[TASK_NAME]", args.task_name)
processor = PROCESSORS[args.task_name]()
args.label_list = processor.get_labels()
wandb_initalized = False
if args.local_rank != -1:
torch.distributed.init_process_group("nccl", rank=args.local_rank)
for n_train_examples in args.train_examples:
train_ex_per_label, test_ex_per_label = None, None
train_ex, test_ex = n_train_examples, args.test_examples
if args.split_examples_evenly:
train_ex_per_label = eq_div(n_train_examples, len(args.label_list)) if n_train_examples != -1 else -1
test_ex_per_label = eq_div(args.test_examples, len(args.label_list)) if args.test_examples != -1 else -1
train_ex, test_ex = None, None
data_dir = os.path.join(args.data_dir, args.task_name)
output_dir = args.output_dir.replace("[TASK_NAME]", args.task_name)
train_data = load_examples(
args.task_name, data_dir, TRAIN_SET, num_examples=train_ex, num_examples_per_label=train_ex_per_label
)
dev_data = load_examples(
args.task_name, data_dir, DEV_SET, num_examples=test_ex, num_examples_per_label=test_ex_per_label
)
if args.do_test:
try:
test_data = load_examples(
args.task_name, data_dir, TEST_SET, num_examples=test_ex, num_examples_per_label=test_ex_per_label
)
except (FileNotFoundError, NotImplementedError):
test_data = None
warnings.warn("Test data not found.")
else:
test_data = None
try:
unlabeled_data = load_examples(
args.task_name, data_dir, UNLABELED_SET, num_examples=args.unlabeled_examples
)
except FileNotFoundError:
warnings.warn("Unlabeled data not found.")
unlabeled_data = None
args.metrics = METRICS.get(args.task_name, DEFAULT_METRICS)
pet_model_cfg, pet_train_cfg, pet_eval_cfg = load_pet_configs(args)
sc_model_cfg, sc_train_cfg, sc_eval_cfg = load_sequence_classifier_configs(args)
ipet_cfg = load_ipet_config(args)
try:
if args.method == "pet":
final_results = pet.train_pet(
pet_model_cfg,
pet_train_cfg,
pet_eval_cfg,
sc_model_cfg,
sc_train_cfg,
sc_eval_cfg,
pattern_ids=args.pattern_ids,
output_dir=output_dir,
ensemble_repetitions=args.pet_repetitions,
final_repetitions=args.sc_repetitions,
reduction=args.reduction,
train_data=train_data,
unlabeled_data=unlabeled_data,
dev_data=dev_data,
test_data=test_data,
do_train=args.do_train,
do_eval=args.do_eval,
no_distillation=args.no_distillation,
seed=args.seed,
overwrite_dir=args.overwrite_output_dir,
save_model=args.save_model,
local_rank=args.local_rank,
)
elif args.method == "ipet":
final_results = pet.train_ipet(
pet_model_cfg,
pet_train_cfg,
pet_eval_cfg,
ipet_cfg,
sc_model_cfg,
sc_train_cfg,
sc_eval_cfg,
pattern_ids=args.pattern_ids,
output_dir=output_dir,
ensemble_repetitions=args.pet_repetitions,
final_repetitions=args.sc_repetitions,
reduction=args.reduction,
train_data=train_data,
unlabeled_data=unlabeled_data,
dev_data=dev_data,
test_data=test_data,
do_train=args.do_train,
do_eval=args.do_eval,
seed=args.seed,
overwrite_dir=args.overwrite_output_dir,
save_model=args.save_model,
local_rank=args.local_rank,
)
elif args.method == "sequence_classifier":
final_results = pet.train_classifier(
sc_model_cfg,
sc_train_cfg,
sc_eval_cfg,
output_dir=output_dir,
repetitions=args.sc_repetitions,
train_data=train_data,
unlabeled_data=unlabeled_data,
dev_data=dev_data,
test_data=test_data,
do_train=args.do_train,
do_eval=args.do_eval,
seed=args.seed,
overwrite_dir=args.overwrite_output_dir,
save_model=args.save_model,
local_rank=args.local_rank,
)
else:
raise ValueError(f"Training method '{args.method}' not implemented")
except json.decoder.JSONDecodeError:
warnings.warn("JSONDecodeError in transformers")
continue
if final_results is not None and args.local_rank in [-1, 0]:
if not wandb_initalized:
wandb.init(project=f"pvp-vs-finetuning-{args.task_name}", name=naming_convention(args))
wandb_initalized = True
final_results["training_points"] = n_train_examples
wandb.log(final_results)
def naming_convention(args):
method = f"PVP {args.pattern_ids[0]}" if args.method == "pet" else "CLF"
model = args.model_type
if args.verbalizer_file is None or method == "CLF":
verbalizer = None
elif "neutral" in args.verbalizer_file:
verbalizer = "neutral"
elif "reverse" in args.verbalizer_file:
verbalizer = "reverse"
else:
raise ValueError(f"unrecognized verbalizer file {args.verbalizer_file}")
name = f"{method} {model}" + (f" {verbalizer} verbalizer" if verbalizer is not None else "") + f" seed {args.seed}"
return name
if __name__ == "__main__":
main()