-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathtrain.py
236 lines (210 loc) · 8.34 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python
"""
@File : train.py
@Time : 2021/06/29 17:19:36
@Author : AbyssGaze
@Version : 1.0
@Copyright: Copyright (C) Tencent. All rights reserved.
"""
import argparse
import datetime
import os
import random
from pathlib import Path
import numpy as np
import torch
from torch.utils.tensorboard import SummaryWriter
from src.config.default import get_cfg_defaults
from src.datasets import build_dataloader
from src.model import build_detectors
from src.utils.utils import (get_logger, loss_info,
visualize_centerness_overlap_gt,
visualize_overlap_gt)
from src.utils.validation import evaluate
# os.environ["OMP_NUM_THREADS"] = "1"
# seed = 42
def setup_seed(seed):
"""set random seed to protect the trainning results.
Args:
seed (int): random seed
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def main(opt):
cfg = get_cfg_defaults()
cfg.merge_from_file(opt.config_path)
setup_seed(opt.seed)
# output folder init
timestamp = datetime.datetime.now().strftime('%m-%d-%H:%M')
if opt.debug:
opt.save_path = Path(f'./OUTPUT/OETR/debug/{cfg.OUTPUT}' + timestamp)
else:
opt.save_path = Path(f'./OUTPUT/OETR/checkpoints/{cfg.OUTPUT}/' +
timestamp)
opt.save_path.mkdir(exist_ok=True, parents=True)
# pytorch init
torch.cuda.set_device(opt.local_rank)
torch.distributed.init_process_group('nccl', init_method='env://')
device = (torch.device(f'cuda:{opt.local_rank}')
if torch.cuda.is_available() else torch.device('cpu'))
# build dataloader and detectors
training_dataset = build_dataloader(cfg.DATASET.TRAIN,
cfg.DATASET.DATA_ROOT)
model = build_detectors(cfg.OETR).to(device)
if cfg.OETR.CHECKPOINT:
model.load_state_dict(
torch.load(cfg.OETR.CHECKPOINT, map_location='cpu'))
model = torch.nn.parallel.DistributedDataParallel(
model, device_ids=[opt.local_rank], find_unused_parameters=True)
optimizer = torch.optim.AdamW(model.parameters(), lr=opt.learning_rate)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer,
milestones=[15, 30],
gamma=0.1)
if opt.local_rank == 0:
writer = SummaryWriter(opt.save_path / 'logs')
logger = get_logger(
os.path.join(opt.save_path, ('{}.log'.format(timestamp))))
logger.info(opt)
logger.info(cfg)
logger.info(model)
if opt.validation:
validation_dataset = build_dataloader(cfg.DATASET.VAL,
cfg.DATASET.DATA_ROOT)
validation_dataset.build_dataset()
validation_dataloader = torch.utils.data.DataLoader(
validation_dataset,
batch_size=opt.batch_size,
num_workers=opt.num_workers,
shuffle=False,
)
# start training
for epoch in range(opt.epoch):
model.float().train()
training_dataset.build_dataset()
train_sampler = torch.utils.data.distributed.DistributedSampler(
training_dataset)
training_dataloader = torch.utils.data.DataLoader(
training_dataset,
batch_size=opt.batch_size,
shuffle=False,
num_workers=opt.num_workers,
pin_memory=True,
drop_last=True,
sampler=train_sampler,
)
for i, batch in enumerate(training_dataloader):
data = model(batch)
loss = sum(_value for _key, _value in data.items()
if 'loss' in _key)
loss.backward()
optimizer.step()
optimizer.zero_grad()
# save info and visualization
if opt.local_rank == 0 and i % 50 == 0:
info = loss_info(data, writer,
i + epoch * len(training_dataloader))
logger.info(
'Epoch [{}][{}/{}], lr: {:E}, loss: {:.5f}, {}'.format(
epoch,
i,
len(training_dataloader),
scheduler.get_last_lr()[0],
loss,
info,
))
writer.add_scalar('Loss/train', loss.item(),
i + epoch * len(training_dataloader))
if cfg.DATASET.TRAIN.VIZ:
bbox1 = data['pred_bbox1'][0].detach().cpu().numpy(
).astype(int)
bbox2 = data['pred_bbox2'][0].detach().cpu().numpy(
).astype(int)
gt_bbox1 = batch['overlap_box1'][0].cpu().numpy().astype(
int)
gt_bbox2 = batch['overlap_box2'][0].cpu().numpy().astype(
int)
viz_name = os.path.join(
str(opt.save_path),
'train_{}_{}_'.format(epoch, i) +
batch['file_name'][0],
)
if 'pred_center1' in data.keys():
visualize_centerness_overlap_gt(
batch['image1'][0].cpu().numpy() * 255,
bbox1,
gt_bbox1,
data['pred_center1'][0].detach().cpu().numpy(),
batch['image2'][0].cpu().numpy() * 255,
bbox2,
gt_bbox2,
data['pred_center2'][0].detach().cpu().numpy(),
viz_name,
)
else:
visualize_overlap_gt(
batch['image1'][0].cpu().numpy() * 255,
bbox1,
gt_bbox1,
batch['image2'][0].cpu().numpy() * 255,
bbox2,
gt_bbox2,
viz_name,
)
# validation results
if opt.local_rank == 0 and opt.validation:
model.eval()
evaluate(
model,
validation_dataloader,
logger,
opt.save_path,
iou_thrs=np.arange(0.5, 0.96, 0.05),
epoch=epoch,
oiou=cfg.DATASET.VAL.OIOU,
viz=cfg.DATASET.VAL.VIZ,
)
scheduler.step()
if opt.local_rank == 0:
print('---------save weights----------')
model_out_path = opt.save_path / 'model_epoch_{}.pth'.format(epoch)
torch.save(model.module.state_dict(), model_out_path)
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Generate megadepth image pairs',
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)
parser.add_argument(
'--config_path',
type=str,
default='assets/megadepth/config.py',
help='configs of trainning',
)
parser.add_argument('--batch_size', type=int, default=8, help='batch_size')
parser.add_argument('--num_workers',
type=int,
default=8,
help='num_workers')
parser.add_argument('--local_rank',
type=int,
default=0,
help='node rank for distributed training')
parser.add_argument('--debug',
action='store_true',
help='Use less datasets')
parser.add_argument('--validation',
action='store_true',
help='Use validation recalls')
parser.add_argument('--learning_rate',
type=float,
default=1e-4,
help='Learning rate')
parser.add_argument('--epoch',
type=int,
default=30,
help='Number of epoches')
parser.add_argument('--seed', type=int, default=42, help='Random seed')
args = parser.parse_args()
main(args)